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Complex-dimensional renormalization is defined for an arbitrary Feynman amplitUde and shown to 
be equivalent to BPH renormalization. Using quantum electrodynamics as an example, Ward 
identities are proved; here Carlson's theorem extends the identities from integer to <;Qmplex 
dimension. Both complex dimensional and analytic regularization are necessary at intermediate 
stages. 

In Ref. 1, t'Hooft and Veltman propose a renormaliza­
tion method based on the generalization of the dimension 
of space-time to a complex number. (Such a generaliza­
tion was previously proposed by Regge2 - 5 to discuss 
analytic properties of Feynman amplitudes.) In this 
paper we verify that the method indeed gives a renor­
malization (proved in Ref. 1 for graphs continuing up 
to two loops; see also Ref. 6) and use Carlson's theorem 
to show that it maintains Ward identities. (We will 
actually discuss Ward identities in the case of QED, but 
the methods used are in no way speciaL) We define an 
intermediate regularization which includes both complex 
dimension and the usual A. regularization of analytic re­
normalization, to give amplitudes which are well defined 
in all integer dimenSions; when all the A parameters are 
set to 1, the regularization of Ref. 1 is recovered. 

1. REGULARIZATION 

We suppose given a connected Fe}'1lman graph G with 
m vertices VI"'" Vm and L lines {II"'" IJ ::::: £'; h ==: 
L - m + 1 will denote the number of loops of G. [When 
other graphs enter the discussion we write m(G), £,(G'), 
etc.] The line 1 E £, has initial vertex Vii and final ver­
tex Vj , and we associate with 1 a complex variable A I; 
the point AO E C L is speCified by AI::::: 1, alII. (Multiples 
of variables are denoted by boldface.) Finally, n-dimen­
sional Minkowski space Mn uses Lorentz inner product 

n-1 
p.q =Pllqvgllv :::::pOqO - 6p iXi 

1 

and Fourier transform 

lsisjsm. 

We begin by discussing scalar particles, so that each 
line 1 has propagator ~/(A/) E S'(Rn) 

_ i 
~I(A) - ---'----. 

I - (m2 _p2 _ iO)AI 

The physical propagator is obtained by setting Al == 1. 
For ReAl> n/2, ~I is a continuous function of x E Rn, 
and hence the Feynman amplitude y'(A., n) E S'(Rnm), given 
by 

y'(A., n)(x) ::::: n ~1(A/)(xf - Xi ), 
J) 1 1 

is well defined. Its Fourier transform is easily calcu­
lated7: 

- (hn) y'(A., n)(p) = fa(A., n)r 6 Al -"2 
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_ D(O!, S»)(hnI 2-r.A/) (1.1) 
d(O!) , 

where 

fG(A., n) ::::: «211)nI2(- i)m-1/2Cnh/2)n.cr(AI»' 

and d(O!),D(O!, s) are the Symanzik polynomials for G. We 
sometimes write l' == lim .-0+ 1'. , where 1'. is defined by 
replacing each mT in (1.1) by mr - iE. 

Definition 1.1: The (analytically and complex­
dimensionally) regularized amplitude y'(A., /I) for the 
graph G is obtained from (1.1) by replacing n by the 
complex variable v. 

We remark that this definition is equivalent to that of 
Ref.! (except for the presence of the A'S); in particular, 
it is obtained by applying the formulas of Ref. 1, Appendix 
A, to ap-space Feynman integral. 7'(A., /I) may be con­
sidered as an element of S'(Rn.m) for any n, since it 
depends only on the invariants s ij • 

Theorem 1. 2: y'(A., v) may be analytically continued 
to a meromorphic function of (A., v) E CL+1, having Simple 
poles on the linear varieties 

/lH::::: 6 >"1 - h(H) J:'. ::::: - k, 
.c (Jf) 2 

(1. 2) 

for each irredUCible subgraph H of G and positive integer 
k (H is irreducible if it is connected and cannot be dis­
connected by removing a line or vertex). 

Proof: We introduce into (1. 1) the scaling trans­
formations of the O! variables used in the tlteory of 
analytic renormalization. 7 Then 7'(A., v) becomes a sum 
of integrals of the form 

" 11 11 v -1 / c5( LJPi)r(vG)fG(A., v) ... ntH
H dtHE(t)-V 2 

o 0 H 

x (6 m 2 {3 (t) _ F(t, S») -VG (1. 3) 
.c I I E(t) , 

where nH is over an "s family" of subgraphs H which 
are irreducible or consist of a single line. In (1. 3), {31 
is a monomial in the tH with {31 ::::: 1 for some 1, E and F 
are polynomials with E strictly positive in the region of 
integration. When the factors t;;n-1 in (1. 3) are regarded 
as distributions,7,8 (1. 3) is well defined for all A, /I, and 
the singularity structure of (1. 2) emerges. [Actually, in 
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(1. 3) we have H ;c G; the singularity (1. 2) for H = G 
arises from the factor r(IIG). Similarly the apparent 
poles of (1. 3) arising from the cases where H = {l} are 
cancelled by the factors r(~I)-l in!G(A, II).] 

We now extend the definition to the case of particles 
with spin 1 or :v2 ; we assume that a particular represen­
tation {y II / p, = 0, 1, ... , n - 1} of the Clifford algebra 
C(Mn) has been chosen in each dimension, such that the 
trace of any product of an odd number of y's vanishes. 
We will actually normalize the trace to satisfy Tr(1) = 4 
in all dimensions. 1 Now the amplitude for any process, 
calculated in n-dimensions, is a linear combination of 
certain tensor forms 

P/', gllV, tJ j , tJjyll, etc. (1. 4) 

(with distributions similar to 1. 1 as coefficients). How 
are we to interpret these tensors when n is replaced by 
the complex variable II? 

The solution proposed in Ref. 1 is threefold: 
(a) external momenta are always from M 4; and all y 
matrices are eliminated before introducing the complex 
dimension by (b) evaluating the trace for closed loops of 
spinor lines and (c) inserting projection operators, and 
then taking the trace, for open spinor lines. For simple 
graphs this procedure is adequate; however, when recur­
sive subtractions are necessary, difficulty is encountered, 
particularly with procedure (c). That is, it is unclear how 
the amplitude (or vertex part) for a subgraph can be in­
serted recursively into the amplitude for the graph if we 
have defined only its traces when multiplied by various 
y matrices. 

For this reason we will treat tensors such as (1. 4) as 
symbolic quantities, which may be interpreted as exist­
ing in whichever dimension is necessary at any time 
(4 for physical renormalization, arbitrary n for recur­
sive subtraction). To regularize an amplitude we there­
fore express it as a linear combination of these symbolic 
forms in dimension n, then replace n by II in the co­
efficient distributions. As in Ref. 1, an additional poly­
nomial II dependence of these coefficients is generated 
by contractions via the relation gil" = n. 

Finally, we define similarly re~ularized amplitudes 
for generalized graphs. Let Q = tu 1'" .Un } be a parti­
tion of {Vi"" Vm }, with Uj = {Vii"" V im(j)}; let G(Uj ) be 
the subgraph of G formed by all lines joining vertices in 
Ui ; and let G be the graph obtained from G by contract­
ing the subgraphs G(Ui ). Suppose we are given vertex 
parts 

~(Ui) = 0, if G(Ui ) not IPI, 1
1, if mj = 1, 

oCEPia)Di (Pja ) otherwise, 

with Di a Lorentz-invariant polynomial, of degree at 
most equal to 

(1. 5) 

where r
l 

is the degree of the polynomial in the numerator 
of the lth propagator. (Note that this superficial diver­
gence is computed in dimension 4.) The coefficients of 
D may depend on A, II. X (U j ) may be interpreted as de­
fining a vertex part in any particular dimenSion, accord­
ing to the interpretation above. 

In dimension n we form the amplitude 
M 

1"Q.~ (A, n) = 0_ .60 1(,\) ° X(Uj)' 
.c(G) j o l 

(1. 7) 
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Equation (1. 7) is again a linear combination of invariant 
tensors with coefficients similar to (1.1), so that we may 
define 1"(~, II) for any II as above. Symanzik rules for 
these amplitudes are worked out in Appendix C; for 
future use we note that each coefficient is a sum of terms 
of the form (compare 1. 3) 

~ ( . ~ r 1 r 1 v -j -1 -v/2-j 
JG A,II)r(IIG -JG)6(LJPj )Jo ••• Jo OtH

H H dtHE{J(t) 
H 

x P(t, s, 1I)[~m¥i3I(t) - Fe(t, s)/Ea(t) r( "G - iG) , 

(1. 8) 

where j,jH are positive integers and P is a polynomial. 

2. RENORMALIZATION 

The regularized amplitudes are renormalized1 by a 
slight variation of the standard BPH scheme of recursive 
subtractions. In the a-space context of this paper we can 
use the (minimal) counterterm structure associated with 
generalized vertices of the graph, Le., we make sub­
tractions only for those divergent subgraphs conSisting 
of all lines connecting a given subset of the vertices. (In 
ap-space formulation as in Ref. 1 subtractions for addi­
tional divergent loop integrations are necessary.) 

In this section we use dimensional regularization only, 
Le., we set A = AO at all times, and will therefore omit 
the ~ dependence of the amplitudes. 

Definition 2.1: Iff(lI) has an isolated singularity at 
II = 4, let Kf be the singular part, defined by 

Kf(lI) = J ~(II') dll' 
I ,,'-41=r II - II 

for /11 - 41 < r. 

Definition 2.2: Let 'Y(II)(Vi ) = 1, and suppose induc­
tively that we have defined 'Y(II)(V{, ••• , V~,) for all 
generalized vertices {Vl' .•. , V;,} c {V v ..• , V m}, with 
r' < r. Then 

iP(II)(V{, ... , V~) = P1"Q.1J(II)(V{, ... , V;), (2.1) 

'Y(II)( Vi, ... , V~) = - KiP(lI)( V1, ... , V~), (2.2) 

(P(II)(V{, ••• , V~) = <P(II)(VV ••• , Vr ) + 'Y,,(Vl"'" V~). 
(2.3) 

In (2. 1) the sum is over all partitions Q of {Vi, ... , V;} 
into at least two generalized vertices. (P(II)(VV "" Vm ) 

is then the renormalized amplitude for the graph G. 

We prove below that 'Y(II)(VI , ... , V;) is in fact a ver­
tex part; this was shown in Ref. 1 for graphs containing 
up to two loops. [Actually, it is necessary to know this 
inductively for r' < r in order that (2.1) be well defined.] 
Formulas (2. 1)-(2.3) exactly parallel the BPH scheme 
except that renormalization is effected by discarding a 
pole in the complex dimension II rather than discarding 
low order terms of a Taylor series. 

We wish to compare (2.1)-(2.3) with the BPH CR 
operation, and will follow the notation of Ref. 9; in par­
ticular, if W(II) is an amplitude associated with some 
generalized vertex {VI' ..• , V;}, and W(II) = 6(~Pi)F(II, p), 
then M'W = 6(~Pi)G(II,P), with G the Maclaurin series 
for F in p up to order p,(V1, ... , V;). Define finite vertex 
parts by 

1
1 ifr=l 

X(II)(V{, ••• , V;) = 0 if G(!J, .•• , V;)IPR (2.4) 
(1 - K)M(P(II)(V1, •.• , V;) 

otherwise . 
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[X is certainly a vertex part, by definition of M; it is 
"finite" because the (1 - K) factor removes the singu­
larity at II = 4.] Let <R', X', CR' be the BPH quantities 
defined using this finite renormalization and complex 
dimensional regularization: 

CR'(II)( V1, ... , V;) = ~2"' Q.!I' (11)( Vi, ••• , V;), 

X'(II)(Vi, ••• , V~) = - MCR'(II)(Vi, ••• , V;) 

+ X (II)(Vi, ••• , V~), 

(2.5) 

(2.6) 

<R(II)( V1, ... , V~) = CR(II)( Vi, ••• , V;) + X '(11)( Vi, •• " V~), 

(2.7) 
with ~Q as in (2.1). 

Theorem 2.3: For any {Vi, ••• , V;} C {VI"'" Vm }, 

X'(II)(VI ,.··, V;) = 1/(II)(VI,.··, V~), 

CR'(II)( VI' ... , V;) = (5)(11)( VI' ... , V~), 

<R'(II)(V1, ... , V;) = (l>(II)(VI, ... , V~). 

(2.8) 

(2.9) 

(2.10) 

Corollary 2.4: The complex-dimensional renormal­
ization of Definition 2. 2 belongs to the class of BPH 
renormalizations. 

Proof: This is precisely the content of (2. 10). 

Corollary 2.5: 1/(11) is a vertex part. 

Proof: This follows from (2.8), since X '(11) is a 
vertex part. 

The crucial lemma is 

Lemma 2. 6: <R'(II)(V{, ••• , V~) is analytic at II = 4. 

Since we expect the <R operation to remove all diver­
gences, Lemma 2.6 is intuitively reasonable. The proof, 
however, is complicated by the complex-dimensional 
regularizations; we relegate it to Appendix A. 

Proof of Theorem 2.3: Formulas (2.8)-(2.10) 
certainly hold if r = 1; suppose inductively that they hold 
for all r < r o. Then from (2.1) and (~. 5), using (2.8) for 
r < r o, (2.9) holds for r = roo Thus X (II)(V{, ••• , V~o) = 
(1 - K}MCR'(II)( Vi, ... , V~ ), and from (2.6), X'(II)(V{, ... , 

o 
V; ) = - KMCR'(II)(Vi, ... , V~). Since K2 = K, KX'(II) 

o .0 

(Vi, ••• , V~ ) = X'(II)(Vi, ••• , V; ). But from Lemma 
2.6, 0 0 

0= K<R'(II)(VI , ... , V~) o 
= KCR(II)(Vi, ••• , V;) + KX'(II)(VI , ... , V~) o 0 

=- 'Y(II)(VI , ... , l';) + X'(II)(VI ,· .. , V;), 
o 0 

proving (2.8). Equation (2.10) follows immediately from 
(2.8) and (2.9). 

3. WARD IDENTITIES 

We will use QED as an example in this section, but the 
arguments given are quite general. Consider then a 
particular Ward identity, e.g., for the vacuum polariza­
tion tensor: 

(3.1) 

We wish to prove a regularized version 
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(3.2) 

Then the recursive subtractions of (2.1) preserve (3.2) 
(the proof is the same as for any gauge-invariant 
regularization), and the (1 - K) operation in (2.3) yields 
a renormalized amplitude which also satisfies the Ward 
identity. 

There are three difficulties in establishing (3.2): (a) 
in complex dimension the contraction over the index P-
is meaningless (as explained in Sec. 1 we do not take 
external vectors as four-dimensional); (b) even in integer 
dimensions divergent quantities are involved, and the 
formal proofs are therefore suspect; and (c) the usual 
manipulations to establish (3. 1) are based on the p-space 
integral form, which is not available to us when II is 
complex. We will treat these difficulties in turn. 

The problem of contractions in nonintegral dimension 
is handled by regarding Ward identities as relations 
between the coefficients of various tensors. In (3.2), for 
example, write II 1'0(11 ; k) = A(II, k2)g1'0 + B(II; k 2)kl'k O

, so 
that the Ward identity becomes 

(3.3) 

Now (3.3) makes sense for all values of II (and we prove 
it below). All Ward identities may be interpreted in 
this sense. (It is necessary to first choose a linear 
basis for all the tensor forms, and express all amplitudes 
in terms of this basis.) We will usually not mention this 
explicitly in what follows. 

Before proceeding we introduce the follOwing notation. 
For any QED graph G, with 1 a Fermion line incident on 
an external photon vertex Vi' let Gz, i be the graph obtained 
from G by replaCing 1 with a scalar particle, and remov­
ing the y matrix associated with 1';; let Cz• i be obtained 
from Gz• i by contracting 1. Then the amplitudes for these 
graphs are related by 

Lemma 3.1: 

2"'GI.i(A., II) 1 Az =0 = i2"'c; . (A., II). Z.' 

Proof: With II an integer, the lemma follows 
immediately from the p-space Feynman integral, using 
,3,zl A1=0 = i. For nonintegral II we argue directly from 

(1.1), treating the factor Il~Z-l [= (Ilz):z-I] as a distri­

bution and uSing8 {1l>-l/r(~)IAI =0 = (j(ll z). By holding 

Re ~l' ~ 0, l' ;" 1, divergence difficulties are avoided; 
the result extends to all A. by analytic continuation. 

To treat difficulty (b) we prove a modified identity 
involving the ~ts. The propagator S(~,p) = i(JI + m) 
(m 2 - p2 - iOtA satisfies a generalization of the usual 
Ward-Takahashi identity: 

S(~a'P).}(S(~b'P + k) = - S(>la,p)1:..(~b - 1,p + k) 

+ 1:..(~a - 1,P)S(Ab,P + k), (3.4) 

where a is the scalar propagator of mass m. Inserting 
(3.4) into the p-space Feynman integral for 2"'G immedi­
ately proves the integer dimension case of 

Theorem 3.2: Suppose that G is a QED graph with 
VI an external photon vertex and a, b the fermion lines 
inCident on VI' Then 
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P,~, 

FIG. 1. A A - regularized identity. 

, 

8 
FIG. 2. The identity with A regularization removed. 

(Pl)/.II 'l'~I/.I2 ... (A, II)(Pl' ••• ,Pm) 

- 'l'tb2
'" (Aa' Ab - 1, ... ; lI)(p) 
.1 

(3.5) 

Remark: This identity is indicated pictorially in 
Fig. 1, where the double line denotes a scalar particle, 
and the dotted line an external momentum (no longer 
particularly a photon). If in (3.5) we set Al = 1 for all 1, 
and use Lemma 3.1, we obtain 

(P ) T./.II·" ( )(P) - - T.1'2·" ( )( ) + T.P2·" ( )( ) 1 /.II G II - Gb,l II P Ga,l II P (3.6) 

(see Fig.2). But (3.6) is precisely the relation needed to 
establish Ward identities (after inserting an external 
photon vertex into a diagram in all possible ways). Thus 
there remains only to prove Theorem 3. 2 for noninteger 
II. 

We wish to apply Carlson's theorem lO.ll to a suitable 
function; to avoid complicated analytic continuations we 
work in a region of (A, II) space in which there is no ultra­
violet divergence. (It is here that we use critically the 
A regularization.) The necessary estimate comes from 

Lemma 3.3: Let G be an arbitrary Feynman graph, 
'l': (A, II, 5) the coefficient of some tensor form in the 
Feynman amplitude for G, and mo the minimal mass 
occurring in G. Then there exist positive constants a, b, 
k such that for lSi) < a and ReAl > ~ Rev> b, 

(
m2)VG 

IfG'l(A, V)r(IIG)-l T 'l'.(A, II, s) I 

(2EL IIIG I) 
:s K exp , (3.7) mg 

Proof: According to (1. 8) the function to be esti­
mated is a sum of terms of the form 

x E(tfv/2-iX-vG +i G, 

where 

x = [(F(t..!!l + :6(m 2 - iE){3 )~J 
E(t) I I I m5 ' 

with P a polynomial and j H,j fixed positive integers. 
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Take b= max{jH,j} + 1 (H = G is included). Then 
IIIG - il-l:s 1,fpr i:SjG;using (1. 2), RellH 2: Rell/2 > 
jH + 1, so I t;H-JH-1 I :s l;and,sinceE(t) 2: 1, IE(t)-v/2-il 
< 1. The polynomial II dependence is dominated by the 
exponential in (3.7). Finally, for a sufficiently small, 
ReX> 1 (since {31 2: 0 and (31o = 1 for some lo) and 

ImX:s 2LE/m5' Hence 

02: argX 2: tan- 1 
(- !Et) 2: - ~~L, 

and 

IX-(vG-i)G I = Ixl ia exp(- RellG InlXI + ImvG argX) 

:s K' exp(2EL IIIG I/mg). 

Inserting these estimates into (3.8) yields (3.7) 
immediately. 

Proof of Theorem 3.2: Let the coefficient of some 
tensor form in (3.5) (with 10 dependence added) be 
g .(A, II, s); we wish to show 

g .(A, II, s) = O. (3.9) 

Fixing real numbers 11 1, with 111 > 1;2' and setting Al = 
11111, we have IIG = {311 with (3 = (3(rl) > 1. For 10 sufficiently 
small and I sil < a, we may by Lemma 3.5 apply Carl­
son's theorem to 

to find that h(v) = O. Since g € is analytiC in A and real 
analytiC in s, (3.9) follows for all (A, s); the 10 -) 0 limit 
gives (3.5). 

APPENDIX A: THE BPH CR OPERATION WITH 
COMPLEX-DIMENSIONAL REGULARIZATION 

Our purpose is to sketch the proof of Lemma 2.6. We 
wish to use, with as little additional machinery as 
possible, the convergence estimates which Hepp9 has 
given for the CR operation. Complications arise because 
Hepp's methods rely heavily on the product structure of 
the regularized Feynman amplitude, a structure which is 
destroyed by the complex-dimensional regularization. 

We first rewrite the CR' operation in terms of the CR 
operation (which involves no finite renormalization) for 
generalized graphs: 

CR''l'(A, II) = :6 CRT.Q oc (A, II), 
Q ' 

(A1) 

where the sum is over all partitions Q of { V 1> ••• , V m} 
and'l'Q,x is 1efined as in (1. 7), but starting from the 
vertex parts X of (2.4). The usual proof12 of (A1) does 
not involve the product structure of 'l', but only the 
multilinearily in the vertex parts of the amplitude for a 
generalized graph; this continues to hold for complex­
dimensional regularization. It therefore suffices to prove 

Lemma A1: For any finite vertex parts X(A, II), the 
amplitude 

CR'l'Q,i (A, II) (A2) 

is analytic at (10 ,4). 

Proof: For simplicity we discuss only the partition 
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Q = {{ V1}, ••• , {vmH. Hepp (Lemma 3.1 of Ref. 9) 
gives a representation of (A2) which extends immediately 
to n dimensions and the inclusion of A regularization: 

CR1'(A, n) = 2: 2: 5'Jf(A, n). (A3) 
" T 

Here 2:" runs over permutations 1T of £, and 2:T over 
certain "trees"; 5'lJ. is the Feynman amplitude for the 
tree T integrated over the region!O" = {a I al,,(l) :s ••• 

:s a
l 

}. Moreover,5'f is shown to be given a Feynman-
,,(L) 

like integral; following through the proof, we find that the 
A n dependence enters in four ways: an overall factor 
j(A, n)r(vG - jG)-1, as in (1. 8); possible polynomial n-

AZ-1 dependenc e (from gil II = n); factors a I in the integrand, 
and a replacement of Hepp's DI' = fl Dz2 

IEf,(I')-m 

by fl DI-n/2. Thus we may define 5'f(A, v) for 
IEf,(I')-m 

noninteger v; (A3) for general v now follows from 
Carlson's theorem (the argument is similar to those of 
Sec.3). Finally, the estimates given by Hepp in Lemma 
3.4 show that 5'Jf(A, v) is analytic at (Ao, 4). 

APPENDIX B: SYMANZIK RULES FOR 
GENERALIZED GRAPHS 

In Ref. 7 (see also Ref. 13) we have given "Symanzik" 
rules for arbitrary Feynman graphs, which allow the a­
space Feynman integral to be written down directly. We 
here record the corresponding rules for generalized 
graphs. 

Thus let G be a Feynman graph as in Sec. 1, with 
propagators 

(Bl) 

where ZI is a polynomial. Let Q be a partition of {V l' ' 
••• , Vm} into generalized vertices Uj = {Vi'l' .•• , Vim(;)}, 
i = 1, ... ,M, and (J the corresponding contracted graph. 
The incidence matrix for G is written 

\ 1, 
e}a = j- 1, 

{ 0, 

if Vii = Via 

if ~I = VIa 

otherWise, 

so that ef = 2:aela is the incidence matrix of G. Given 
vertex parts X(U j ) [(1. 5)], we wish to calculate 1'Q,S: as 
given by (1. 7). 

Writing 

ZI(P) = ZI (~ _O_)e jp 'UI I ' 
Z Ou l "1=0 

(Bl) becomes t:.l = lim, ... o+t:. I ,., where 

Similarly, 
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(B3) 

We insert (B2) and (B3) into (1. 7) and take the Fourier 
transform. It is most convenient to change integration 
variables to Y ill = XiII + sia' The Yi2,'" 'Yim(i) integra­
tions are then done using the Ii functions; the remaining 
Gaussian integration is virtually identical with that 
encountered in calculating an amplitude for (J. Evaluat­
ing this as in Ref. 7 (or Ref. 12) gives 

- I~ roo roo A -1 -n/2 
1'Q,x(A,n)=gQ(A,n)Ii\LJPia )J

o 
... Jo (flail daz)d(a) 

)( flD. - -- rrz - - exp i 2: r.r.--(1 0) (1 0) [ ( M Dt(a) 
• i OSia I i ottz i,j=1 • 1 d(a) 

+2:PiAa -I;[t~/4al + (m 2 -iE)al ])] I _ -0' (B4) 
I s-u-

tl = UI - 2: elaS ja , 
i,a 

r i = qi + :6 alleft l 
I 

m(i) 

qj = :6 Pia, 
a=1 

and d(a),Di~(a) are the Symanzik functions for 7 G: 

d(a)=2: fl a lt 
T I ¢.T 

Dj1 =:6 fl al ; 
T2 I¢.T2 

the sums are respectively over all trees in G and over 
all 2-trees in G which separate Uk from Ui and Uj • 

k E {1, ..• ,M} is arbitrary. 

Now reca1l12 the following definition: Given a set of 
CJuantities {xj} and associated pairwise contractions 
{.K;Xj}, the T product of a monomial in X is defined by 
summing over all contractions, preCisely as in Wick's 
theorem for a T product; the r product is extended to 
polynomials in X by linearity. If we evaluate the u, S 

derivatives in (B4) and set u = s = 0, the integrand will 
contain a factor (see Ref. 12) 

r[f1 ZI(XI)fl Dj(Yia )], 

where 

XI = ~elDi1 %/a,d(a), 
',J 

(B5) 

(B6) 

(B7) 

and other contractions are calculated from (B6), (B7), 
and the relation XiiJill = 0. 

[The momenta XI have an intrinsic characterization. 
For fixed {aJ and {qj}, let {kq IE £(C,)} be arbitrary 
n-vectors satisfying momentum conservation in G. kl= 
XI is then a stationary point for the function I; a

l
(k l )2; 
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p 
e. = 0 
Itt 

FIG. 3. Incidence of paths on generalized vertices. 

Yia is the total momentum flowing out of Via in this 
momentum configuration. See Ref. 5, Sec. 4. 2.J 

More explicit Symanzik rules depend on the idea of 
incidence of an oriented path or circuit P in {'j on lines of 
{'j and on vertices of G. For IE £(G), 

l 
1, 

e{ = 0, 

-1, 

if I E P, and the orientations of 1 
and P coincide, 

if I ¢. P, 

otherwise. 

For a vertex Via, e~ = L)l eta et, Le., 

l
' 1, 

eta = - 1, 

0, 

if precisely one line of P is incident on 
Via, and P is oriented into Via, 

if one line of P is incident, oriented out, 

otherwise. 

See Fig. 3. For each tree T of ('j let PkL(T) be the path in 
T joining Uk to Uj , oriented from Uk to Vj • Then 

Xl = d(aflL;L; ePk/
T>( IT al) %, (B8) 

T j 'lfT 

Y ia = Pia - d(afl~ 1 ei~k/T) C~T a l ) qj (B9) 

(the result is independent of k). Let T* denote a set of 
M lines in ('j containing precisely one circuit C(T*), 
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which is given an arbitrary orientation. Then 

'x6{t' = d(atl L; ( IT a .. ) eC(T*)eC.(T*~ , 
jJ ~ T* 1"'£ T* I I I jUI 

6 

(BI0) 

(Bll) 

'Y.:"Y - d(",)-l" (IT ) C(T*) C(T*) iajJ jb~ - ... L.J al eia ejb ~jl •• 
T* l,fT* 

(B12) 

(B8)-(B12) are the desired rules. 

The final form of (B4) is thus 

i'Q.:r (A, n) = gQ(A, n)o(L; Pia) 1000 

••• 1000 

(IT a~l-l dal) 

X dc(a)-nI2 T [IT Di (Yia)IT ZI(XI)] 

X exp[i~c(a, s)/da(a) - ~ (m1
2 

- iE)a l) J. (B13) 

At this point the variable scalings corresponding to s 
families in G may be introduced. The result is of the 
form (1. 8). 
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On a complex representation of Lorentzian random 
variables 

T. P. Eggarter 

Laboratoire de Physique des Solides*, Universite Paris-Sud, Centre d'Orsay, 91 Orsay, France 
(Received 19 July 1973) 

A Lorentzian random variable X is characterized by its mean value a and its width 'Y. We point out 
some interesting properties of the map X ,....... a + i'Y. We illustrate the usefulness of this map by 
solving a particular problem in the theory of disordered materials. 

I. PROPERTIES OF LORENTZIAN RANDOM 
VARIABLES 

A random variable is said to be Lorentzian if its prob­
ability density is of the form 

1 'Y 
Px(x) = - (1) 

11 (x - 0')2 + y2 

In what follows we will use the words" X is (a, y)" to 
indicate that X is Lorentzian with the probability density 
equation (1). 

Let X, Y be two independent random variables, which 
are (a, y) and (b, 0), respectively; and n a nonnegative 
real. Then the follOwing properties hold: 

(i) nX is (na, ny), 

(ii) n+X is (n + a, y), 

(iii) -X is (- a, y), 

(iv) X+Y is (a + b, y + (j), 

(v) X-1 is 
(a2 : y2' a2 : ,,2) . 

The proof of the above properties follows from the 
fact that if Z = f(X, Y), then 

Pz(z) = (o(z - f(x,Y») = II dxdy(j(z - f(x,Y»Px (x) PY(y), 
(2) 

One simply has to carry out the last integral in (2) to 
check (i) to (v). Properties (i)-(iv) mean that the space 
.e of Lorentzians is closed under linear combinations. 
This also holds, for example, for Gaussians, although 
there is one fundamental difference: for Gaussians the 
squares of the widths are added, (]'1 = (]; + (]~, while for 
Lorentzians it is Simply the widths. Therefore there is 
no central limit theorem in the latter case; the average 
X = N-1(X1 + X2 + ... + X N ) of a certain number of 
equally distributed Lorentzians has the same probability 
density as each term in the sum. Averages do not be­
come sharp as N increases. Property (v) is remarkable. 
It is not shared by Gaussians or any other of the common 
probability laws. 

II. THE MAP X ........... a + i-y 

The way in which the parameters (a,y) and (b, (j) com­
bine in properties (i)-(v) immediately suggests the use 
of complex variables. We define a map M: .e -7 c· (C+ = 
upper half of the complex plane) by the "recipe" that if 
X is (a, y) it is sent into the point Zx = a + iy: 

X ........ Zx = a + iy (3) 

Properties (i)-(v) take with this correspondence the 
following form: Let X ........ Zx and Y ....... Zy. Let n be a 
nonnegative real; then 
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(i) nX ......... nzx , 

(ii) n + X ......... n + zx, 

(iii) - X ......... - z;, 
(iv) X + Y ......... Zx + zy, 

(v) X-1 ......... (z;)-l. 

We see that Eq. 3 maps certain arithmetic operations 
on random variables into exactly the same operations in 
the complex plane, with the only slight complication that 
the complex conjugate must be taken in (iii) and (v). We 
also note incidentally that ii is a particular case of iv, 
since a real may be thought of as a random variable with 
dispersion zero. 

III. A PROBLEM IN THE THEORY OF DISORDERED 
MATERIALS 

The Hamiltonian matrix describing an electron on a 
linear chain of length N in the tight-binding approxima­
tion is the tridiagonal matrix1 

H= (4) 

1 
1 EN 

H we look for an eigenvector of the form 

the eigenvalue equation Hl/J = El/J takes the form 

r 1 == C1/c2 = 1/(E - E 1), 

rj == cj/cj + 1 = 1/(E - Ej - r j - 1), 

(5) 

(6a) 

(6b) 

(6c) 

H the E's are independent random variables with a 
probability density g( E) and we disregard for the time 
being the condition (6c), then all r i 's can be expressed 
as functions of the Ej'S. H p/rj ) is the probability density 
for rj we get from (6b) the recurrence relation 

(7) 

It can be shown that, providedg(E) is reasonably well 
behaved,Pj(x) converges to a function Poo(x) as j -7 cx). 

the convergence, moreover, is uniform in x. Let E;({E j }), 

Copyright © 1974 by the American Institute of Physics 7 
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FIG.1. Location of the roots of Eq. (10). 

i = 1,2, ••• , Nbe the eigenvalues of the problem (6a)­
(6c). Economou and Papatriantafillou1 prove that 

or, in words, that the knowledge of Poo(x) permits the 
computation of the average density of eigenvalues. All 
this holds for an arbitrary g(€). 

(8) 

If we consider in particular the case that the €i 's are 
independent Lorentzians, we see from Eqs. (6a), (6b) and 
properties (ii)-(v) that all r/s will also have Lorentzian 
distributions. That the protilem is exactly soluble in 
this case for the linear chain1 as well as for a Cayley 
tree2 is known. We think nevertheless that the following 
solution, based on the map Eq. 3, is so simple and elegant 
that it deserves to be presented even if the result is not 
new. 

Let all €'s he (0, r) and suppose r~-l is.(aj _1,'Yj _1)' 
From Eq. (6b) and properties (ii)-(vJ we have 

I-> E + ir, 

or, introducing w == E - ir, 
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while a similar analysis gives from (6a) Zl = w- 1 • The 
natural question to ask next is if the iteration of (9) will 
converge to a limiting pOint. To answer, we notice first 
that if a limiting point exists, it must be a solution of 

z2-wz+1=0. (10) 

Equation 10 has two roots ZA and ZB' which satisfy ZA + 
ZB = w and ZAZB = 1. ThUS, ZA and ZB must be located in 
the complex plane as shown in Fig. 1; we have called ZA 

the root inside the unit circle. To see if the iteration of 
(9) will eventually lead to ZA or ZB it is most convenient 
to look at (9) in another complex plane in which the fixed 
pOints have been conformally mapped into 0 and IX). We 
do so by defining 

(11) 

which, when inserted into (9) gives after some elementary 
steps 

(12) 

Since IZAI < 1 the iteration converges exponentially 
fast to u = 0, corresponding to Z = ZA' Having located the 
limiting point, we know Poo [related to ZA by Eq. (3)] and 
we calculate after a simple integration 

1Tp{E) = Im[l/(w - 2zA)]. (13) 

Another quantity of interest is the localization length 
L(E) (see Ref. 1 for details) defined by 

- _1_ == L 10glxIPoo(x)dx. 
L{E) -00 

(14) 

Again doing a simple integral, we get 

L(E) = 1/- log IzAI. (15) 

The whole problem has been reduced by the map Eq. 3 
to the solution of a second order algebraic equation (10). 

We conclude this work with the remark that the equi­
valent problem on a Cayley2 tree of connectivity K 
(instead of a linear chain) is solved by the same method. 
The only difference is that (6b) must be replaced by 

rj = 1/ (E - € j - t rs) 
5=1 

(16) 

and consequently (10) is replaced by Kz 2 - wz + 1 = O. 

* Laboratoire associe au CNRS. 
'E. N. Economou and C. PapatriantafilIou, Solid State Comm. 11, 197 
(1972). 

'P. W. Anderson, R. Abou Chacra, and D. J. Thou1ess, Cambridge 
pre print TCM/35/ 1972. 



                                                                                                                                    

An extension of Hamilton's principle to include 
dissipative systems 

R. M. Kiehn 

University of Houston, Houston, Texas 
(Received 13 April 1973) 

The key idea of conservative Hamiltonian systems is the fact that the closed line integral of action is 
an absolute invariant of the motion. Dissipation effects may be included by considering those systems 
for which the closed integral of action is a parameter-dependent, conformal invariant of the motion. 
An application of this idea to hydrodynamics is made, and the conditions required for the validity of 
the Liouville theorem with respect to conformal Hamiltonian flows are examined. 

INTRODUCTION 

In 1922 E.Cartan proposed an extension of Hamiltonian 
mechanics1 which has yet to fully penetrate the modern 
literature of fluid or statistical mechanics. The 
instances where the technique has been exposed are few 
in number and do not use the full power of the method. 2 

Cartan proposed the principle: An (adiabatic) physical 
system admits a closed integral of action which is a 
parameter-independent invariant of the motion. 

Cartan's extension essentially generalizes Poincare's 
notion of integral invariance to include integration 
domains which are not necessarily equal time point sets. 
However, all classical Hamiltonian methods, including 
Cartan's, apply only to adiabatic systems. In these 
classical formulations, the usual Hamiltonian force, 
dPI'/dT, is always the gradient of a single scalar potential 
function, and as such yields zero contribution to the 
cyclic work, f,~dql'. 

Herein, it will be shown that Cartan's basic approach 
can be extended to include dissipative phenomena. Non­
adiabatic systems, as well as systems with time-depen­
dent Hamiltonians, can be treated from the one general 
principle: A physical system admits a closed integral 
of action which is a parameter-dependent, conformal 
invariant of the motion. A conformal invariant is essen­
tially an invariant of an orientation preserving deforma­
tion. 

Those vector fields which preserve conformal invari­
ance of the closed integral of action will be studied in 
state space, using the current notation of the mathematics 
that Cartan invented.3 A phase-space density will be 
propagated along such vector fields, and the Liouville 
question will be asked: Is the phase-space density m a 
differential invariant of the dissipative, conformal, 
Hamiltonian vector field? An affirmative answer will 
require two flow constraints which are not automatically 
true for conformal Hamiltonian flows. 

PARAMETER-INDEPENDENT HAMilTONIAN FLOWS 
IN THE MANNER OF CARTAN 

Cartan's notion of Hamiltonian mechanics is built on 
the idea that for many physical systems there exists an 
integral of the c2 differentiable 1-form of action, Ci = 
pJJdqJJ - HdT, evaluated on a closed chain z of state space 
variables,qJJ,PJJ , T; the value of the integral is an invar­
iant of the dynamical vector field of flow V as long as 
the points which make up the closed chain z are points 
along the tube of trajectories of the vector field. This 
notion creates a relative integral invariant which is 
slightly more general than the idea invented by Poincare: 
Cartan's relative integral invariant, f,Ci, may be evalu­
ated by integrating around a closed curve of arbitrary 
connected points on the system of trajectories of V, 
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while Poincare's relative integral invariant must be 
evaluated along a closed curve through equal time points 
of the same system of trajectories. 'Cartan's method is 
independent of the time parameterization of the tra­
jectories! Cartan's invariant characterizes the homology 
class of chains confined to a tube of trajectories. 

For a contravariant vector field V the propagator of 
some mathematical object w down the trajectories of 
the vector field is precisely the Lie derivative £v. If an 
object is invariant with respect to propagation down the 
trajectories of the vector field, then its Lie derivative 
vanishes; i.e., £yW = 0 implies invariance of w w.r.t. V. 

If tte components of the vector field V are rescaled 
by some c2 function y, then the trajectories of V are re­
parameterized by y, but the solution curves in a Picard 
sense are the same; i.e., the solution curves of the sys­
tem of first-order differential equations, 

dx 1 dx 2 

-=--= ... (la) 

are the same as the solution curves for the system, 

dt 
--=--= ... (lb) 

Only the time ticks along the solution curves are 
modified by y. If an object, w, is invariant w.r.t.yV for 
all y, then 

all y, (2) 

and the object is invariant with respect to the solution 
curves alone; the result is independent from any para­
meterization (of time ticks) along the solution curve. 

For differential forms, the Lie derivative admits a 
simple construction in terms of the exterior derivative 
(d) and the interior product (i) operators: 

£yW = i(V)dw + di(V)w. (3) 

Utilization of this construction permits the Cartan prob­
lem to be formulated easily. 4 A Hamiltonian flow is a 
vector field V on state space which leaves the closed 
integral of action an invariant for all parameterizations 
of the flow: 

For a given Ci, the requirement (4) imposes constraints 
on the admissible vector fields, V. USing (3), the con­
straint (4) becomes 
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The second integral vanishes over a cycle z as the 
integral is a perfect differential. When the function y is 
arbitrary, it is necessary and sufficient that the inte­
grand of the first integral vanish, 

i(V)da = 0, (6) 

and V is said to be an extremal field for a. Consider 
the 2N+ 1 components of Vas {Vl''/I'' 1}. Equation (6) 
may be explicity evaluated as, 

If + aH) dill' + 
\ I' aql' (

_ vI' + aH)dP ap I' 
I' 

+ - vI' - - f - dT = O. ( 
aH aH) 
apl' I' oql' 

For arbitrary dp II' dqll, dT, the bracket factors must 
vanish to yield Hamilton's equations: 

aH 
vI' =--

oPI' 

aH 
~ = - oql'· 

Note that no statement is made about OH/OT. Cartan's 
principle yields Hamiltonian dynamics-the extremal 
field is unique. 

(7) 

(8) 

The utility of the extremal analysis is limited to 
adiabatic systems (asfl' = - aH/oql'), but certain tra­
jectories may yield an energy change if OH/OT is not 
zero. The fundamental flow invariant is the closed 
integral of action, not necessarily the energy, H, and the 
integration cycle z is not necessarily along a single 
solution curve of the motion. 

A slightly less restrictive system could be established 
by recognizing that the first integral of (5) would vanish 
if the integrand were exact; i.e., consider those cases 
where yi(V)da = -.: dP. Then a search is made for those 
many trajectories V that leave i(V)da integrable; i.e., of 
the form -dP/y. Those admissible parameterizations 
are those functions y which are integrating factors for 
i(V)da. Such systems may be dissipative and will be dis­
cussed collectively with another type of dissipation in 
that which follows. 

ASSOCIATED AND EXTREMAL FIELDS 

Before Cartan's concept is extended, few words are 
necessary about extremal and associated fields. 5 An 
extremal field for a form w is a contravariant vector 
field V that satisfies the equation i(V)dw = O. An 
associated vector field, for a form w is a contravariant 
vector field V that satisfies the equation i(V)w = O. If a 
vector field is both an associated and an extremal field 
for the form w, then w is a differential invariant (and, 
therefore, an open integral invariant) w.r.t. the flow yV 
for all parameterizations yi i.e., 

£yVW = i(yV)dw + di(yV)w = 0 + 0 = O. (9) 

Such vector fields are of interest because the integration 
path of the action integral need not be closed, and yet the 
action integral is still an invariant of the flow, indepen­
dent from any parameterization of the flow. The integral 
is an invariant of the homology class of chains con­
strained to the same system of trajectories. If the field 
is extremal only, then the integration end points must be 
fixed. 
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For the action one-form a, the Lagrange function is 
defined to be L = i(V)a. The additional constraint that 
the field be associated to the action implies that the 
Lagrange function L vanishes, i.e., 

L ~ (PI'VI' -H) = 0, (10) 

which in view of (6) states that 

(11) 

Hence, a Hamiltonian vector field which is both extremal 
and associated to the action a implies that the Hamil­
tonian is homogeneous of degree one in the momenta PI" 
a situation typical of the relativistic Hamiltonian for a 
free particle. 

For such cases, the natural volume element on 2N + 1 
space, n = ct /\ dct /\ •.. /\ da = {PI' oH/apl' - H}dql' /\ ••• /\ 
dPI' /\ ••• /\ dT, is degenerately zero. (It is ordinarily 
assumed that da /\ ••• /\ da is not zero for Nfactors.) 

Althoug~ the relativistic free particle leads to a 
Hamiltonian vector field which is both extremal and 
aSSOCiated, it should be recognized that the usual varia­
tional approach for the nonrelativistic particle leads to 
an extremal field which is not associated. Hamilton's 
equations define an extremal vector field for the action, 
a; this classical Hamiltonian field mayor may not be an 
associated vector field. 

Again, a slightly less restrictive situation arises if 
one searches for all vector fields that leave i(V)da 
integrable, for then the admissible parameterizations 
are those such that yi(V)det = - d(yL). 

AN EXTENSION OF CARTAN'S METHOD: 
CONFORMAL INVARIANCE 

The previously mentioned classical cases of extremal, 
and associated vector field systems are special cases 
of broader class of vector fields characterized by the 
constraint relations, 

and 
i(yV)da = ra - dP, 

i(yV)a = yL. 

(12) 

(13) 

In order to justify interest in (12), extend Cartan's 
argument to include those vector fields V which leave 
the closed integral of action conformally invariant for a 
given parameterization y. Then the definition of con­
formal invariance, 

£yv i et = § £yvCl = ~ ret, 

requires that 

~{i(yV)det - ret} = o. 

(14) 

(15) 

By de Rham's theorem, it is both necessary and sufficient 
that the integrand be a perfect differential, - dP; i.e., 

i(yV)da - ra = - dP, (16) 

which is the same as Eq. (12). (Of particular interest 
for some branches of physics are those homothetic vari­
ations where r is a rational constant, or perhaps a 
Hermitian function.) 

For the vector field V = {vl'.t", I}, explicit evaluation 
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of (16) yields a modified set of Hamiltonian equations: 

(17) 

(18) 

(19) 

where {p, H} is the Poisson bracket 

(20) 

The trajectories in 2N + 1 state space are determined 
by the integration of the usual system of first-order 
equations, 

d1f).l dp).l dr 
-=- ==-, 

v).l f).l 1 
(21) 

but now the system admits nonadiabatic phenomena, for 
the force is not exact; in fact, the curl components of the 
force do not necessarily vanish. The three-dimensional 
space components of the curl of the force are given by 
the Gibbs' expression, 

curlf = + (1/y2) grady x gradP + grad(r/y) x p. (22) 

A coordinate free expression for the complete force 1-
form,!, can be constructed from (12) and (13): 

f = (r/y)Cl- (l/y)dP + dL. (23) 

The nonclosed components of f are given by the exterior 
derivative of (23), 

df = d(r/y) A Cl + (r /y)dCl + (1/y2)dy A dP, (24) 

where the spacelike parts of (24) reduce to (22). The 
fundamental equation of motion is given by the coordin­
ate free expression: 

£yCl=f. (25) 

Following Cartan, if any propagation invariants are 
known, others may be obtained by sequentially operating 
on the Lie derivative with the exterior derivative 
(raising) operator and the interior product (lowering) 
operator. From (25) one obtains by exterior differentia­
tion the first fundamental extension: 

d£v Cl = £v(dCl) = df. (26) 

From (25) one obtains by interior products the second 
fundamental extension, which incidentally measures the 
variation of the Lagrange function down the flow: 

i(V)£vCl = £v(L) = r/y(L) - (l/y)i(V)dP + i(V)dL. 
(27) 

From the definition of the Lie derivative, (27) yields 
an invariant relation between r and P, equivalent to (19): 

i(V){rCl - dP} = O. (28) 

It is also of some interest to compute the Lie deriva­
tive of the Hamiltonian function with respect to those 
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nonadiabatic flows that satisfy (16). The variation of H 
down the flow becomes 

11 

(29) 

which demonstrates that the Hamiltonian varies along 
conformal Hamiltonian flows (16) via three mechanisms: 
through the local time variation of H, itself-the classical 
result; through the local time variation of the pressure 
function P; and through the conformal dissipation factor, 
r/y. 

If Eqs. (26) and (28) are not evanescent, the raising 
and lowering processes may be continued. Of particular 
interest are those combinations which lead to the second 
Lie derivative of the action Cl: 

Note that the only contributions to the second Lie deri­
vative of the closed integral of Cl come from the non­
exact components of the projection of the nonclosed com­
ponents of the force; Le., from i(V)df. 

The units of action are joule-sec; the first Lie deriva­
tive of the closed integral of action yields the cyclic 
work, with units of joules; the second Lie derivative of 
the closed integral of action yields the radiated power, 
with units of joules/sec. Equation (30) is a measure of 
the radiated power. 

It is to be noted that special cases of (12) are well­
studied problems in classical mechanics. 

If y = constant, if dP vanishes, and if r = 0, then (12) 
implies that V is the generator of a contract transforma­
tion of the third kind (a homogeneous contact trans­
formation) . 

If y = constant and if r = 0, then (12) implies that V 
is the generator of a contact transformation of the 
second kind (a restricted nonhomogeneous contact 
transformation) . 

If r :::;: - i(V)d lny, then (12) implies that V is the 
generator of a contact transformation of the first kind 
(an inhomogeneous contact transformation). 

The conformal case (12) is a slightly broader situation 
than these classical systems mentioned above. 

A HYDRODYNAMIC APPLICATION 

In order to reinforce the physical content of the pre­
ceding theory, it is of some interest to give an example. 
The fundamental equation of constraint (25) that must be 
satisfied is essentially a coordinate free representation 
of Newton's equations of motion, valid in any reference 
system. It is analogous to the Navier-Stokes equations 
of hydrodynamics, but in order to easily grasp the 
correspondence it is necessary to alter the viewpoint 
slightly, such that the Lagrange-Euler equations per 
unit mass result from (25). Reconsider the action 1-
form Cl to be redefined as action per unit mass. The 
momenta per unit mass define the covariant components 
of velocity ~Jl; the Hamiltonian per unit mass,H, becomes 
the sum of the kinetic energy, ~V).lv).l' and potential energy, 
~ , per unit mass-essentially defining the concept of 
potential energy in terms of the Hamiltonian. The 
Lagrange function per unit mass L becomes the difference 
between the kinetic and potential energies per unit mass: 
L = (~V).lvl! - ~). For a Euclidean metriC, the Lie deri­
vative on the action per unit mass yields spatial com­
ponents of the form, 
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£ ov 1 ( ya = -' -+2grad v·v)- V X curly + grad4i + gradL. 
aT (31) 

Equating this expression to the rhs of (25) and rearrang­
ing terms leads to the Navier-Stokes format for the 
spacelike components: 

OV + t grad(v·v) - v X curly = - grad4i - grad!:. - .!:.v. 
at p p 

(32) 
The parameterization y has been relabeled p and is 
interpreted as a mass density distribution for the action 
per unit mass ct. 

The recognition that the spatial components of da 
yield the components of vorticity allows the first funda­
mental extension (26) to be interpreted as Helmholtz' 
constraint on the conservation of vorticity. The spatial 
restriction of (26) yields 

£y(da) = 1/p2 gradp X gradP + curl(r/pv). (33) 

For a barytropic [P = P(p)] fluid, which is dissipation 
free in the sense that r = 0, the rhs of (33) [and (26)] 
vanishes, implying that the vorticity is an invariant of 
the motion. Note that a substance need not be dissipative 
in the conformal sense (r = 0), and yet vorticity may be 
created and destroyed, so long as the equation of state is 
not barytropic (dp /\ dP '" 0). The meteorological atmo­
sphere is an example where such effects are dominant. 

The Bernoulli theorem arises from the second funda­
mental extension, (27) and (28), for when (28) is com­
bined with (29), and it is assumed that the fluid is isen­
tropic (dP/p = dl/l), a fundamental invariant (Bernoulli's 
constant) arises for conformally nondissipative (r = 0), 
steady (OP/OT = 0, OH/OT = 0) flows: 

£y{ H + 'I<} = j ~ V I' vI' + ~ oP + oH I . 
/p 2 p aT aT \ 

(34) 

The Bernoulli invariant is the usual enthalpic combina­
tion of H v I' vI' + 4i + 'I<}, which is an invariant of the flow 
if the rhs of (34) vanishes. It is remarkable that the 
Helmholtz theorem must be violated, if power is to be 
radiated from the system; that is, (30) implies that vorti­
city must be created or destroyed if there is to exist any 
net radiated power from the system. The failure of 
Helmholtz's theorem is necessary if power is to be 
radiated, but not sufficient, for there may exist tra­
jectories V along which the projections of df are exact. 

HOMOTOPIES AND CHARACTERISTICS 

At this point in the general theory presented above, no 
constraint on parameterization has been made, but if one 
asserts that (14) be true for all y, then it may be argued 
that P must vanish; however, in that which follows, P will 
be retained for completeness. A particularly interesting 
physical case may be made for those situations where P 
is defined to be the function, - yL, for then (12) becomes 
the defining equation for an equivalence class of vector 
fields which may be viewed as generators of a homotopy; 
i(yV) is the homotopy operator. It is this correspondence 
which gives credence to the concept that a conformal 
invariant is essentially an invariant of an orientation 
preserving deformation. 

When an equation of state of the form P - yL = 0 
exists, then yV is a strictly conformal vector field for 
the action a; Le., £yet = ret. If the additional constraint 
i(V)a == L = 0 is imposed, then V is a characteristic 
vector field which by definition must be both conformal 
and associated. Characteristic vectors are integrable in 
the sense that the Lie bracket of two characteristic 

J. Math. Phys., Vol. 15, No.1, January 1974 

12 

vectors of any form w is an associated vector for the 
form w. Note that the vector field of the relativistic 
free particle is a special case of the characteristic 
system. That is, an extremal field which is also associ­
ated, is a characteristic field with a conformal factor r 
equal to zero. 

For a characteristic system of the action a, Eqs. (10) 
and (17) yield the relation 

(35) 

As long as P is a function of momenta, the Hamiltonian 
need not be homogeneous of degree one in momenta, a 
result to be compared with the free relativistic particle 
case given by (11). 

The characteristic vector fields of the action a are a 
special subclass of vector fields covered by the Eqs. (12) 
and (13). They are of particular interest, geometrically 
speaking, for from (19) it may be determined that P (and 
hence yL) is a singular surface function in state space; 
Le., for the characteristic case, both P = 0 and dPldT = 
O. 

THE LIOUVILLE THEOREM: MASS INVARIANCE 

Consider now a density on phase space. 

m = J.J.(qa,Pa,T)dql /\ ••• /\ dqN /\ dP 1 /\ ••• /\ dPN , (36) 

and the extension of the Liouville question: "Is m a dif­
ferential invariant with respect to the conformal Hamil­
tonian flow?" For invariance of m w.r.t. any parameter­
ized flOW, yV, it follows that 

£ ry(m) = (3(m) 

+ \o~va)~ dT /\ dql /\ ... /\ &? /\ ... /\ dPN = 0, (37) 

where {3 is defined to be 

(38) 

In order for the Liouville theorem to be true, two con­
ditions must be satisfied: 

(a) The equation of continuity must be satisfied; (3 = O. 
(b) The flow must be autonomous in state space; 
o(yV lOT) = O. 

For a flow which satisfies (14), the constraint of con­
tinuity requires that: 

(39) 

which surprisingly does not includeP or L, explicity. 
For the classical case (r = 0), it is usually assumed 
that the Poisson bracket of the parameterization y and 
the Hamiltonian vanishes; then the classical result is 
retrieved from (39): if the flow is continuous ({3 = 0), 
then the density J.J. is constant, and conversely. 

In the general case, continuity does not imply that the 
phase-space density is constant. For a simple case 
where it is assumed that {y, H} = 0 and poor lap a = 0, 
(39) implies that the phase-space density decreases in 
time in an exponential manner, where the decay constant 
is precisely th~ conformality factor per unit parameter­
ization, r /y: 
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d(ln/..l) - r 
(40) 

dT Y 

The dissipative components of the force are related by 
the same factor r/y to the components of momentum 
[see (23)]; the Hamiltonian changes via the same factor 
[see (26)]. All of these results are in direct corres­
pondence to the classical results6 which assume a 
velocity-dependent viscous dissipation. 

The conclusion is reached that dissipative effects can 
be accommodated in Hamiltonian mechanics by studying 
systems which leave the closed integral of action con­
formally invariant. 

Now consider the second condition required for the 
validity of the Liouville theorem. The second condition 
implies that the admissible flow fields are generators of 
a group of motions in 2N space, parameterized by T; i.e., 
the functions V O and f 0 just admit factorization into pro­
ducts of the functions of Po and q 0 and a function of T. If 
the factorization is possible, then y may be chosen such 
as to annihilate the time factor, and the resulting ex­
pression will be independent of T. From Lie's theorem 
the factorization concept is both necessary and sufficie~t 
for the vector field to admit group properties, and from 
(37) it is observed that the group property is thus a 
necessary condition for Liouville's theorem to be true. 

It is interesting to see that the 2N equations required 
for the second condition, 

/..I o(yfo) = 0 
OT ' 

(41) 

may be combined to yield a single necessary equation in 
terms of a scalar function CP: 

cP = y/..I foJov
o 

_ VO ofo ~ = O. 
OT OT l 

(42) 

The function cP is in some sense a measure of the lack of 
the group property for the flow; note that cP involves more 
than the localyme variation of the power density,!ov o • 
For the classIcal case, where the Hamiltonian is steady, 
cP vanishes automatically in virtue of (8); if OH/OT is not 
zero, cP could still vanish through subtraction ortho­
gonality, or both. For the steady dissipative ~ase, cP may 
also vanish. The first situation is the case for potential 
flow, and the second situation is the case for viscous 
laminar flow. 

It is conjectured that cP '" 0 may be a measure of 
turbulence; in this sense the lack of validity of the Liou­
ville theorem indicates a turbulent regime. ({3 '" 0 might 
be interpreted as cavitation.) 

For the conformal flows given by (17) and (18) a rather 
formidable expression, equivalent to (42), may be derived 
for the function cP in terms of y, H, P, /..I, and r. If 
cp(y, H, P, /..I, r) vanishes, then the necessary condition that 
the system admits the group property in time is satisfied. 
If the flow is continuous, then the function {3(y,H, /..I, r) 
must vanish. If the Liouville theorem is to be valid 
both constraints must be satisfied. Note that cP dep~nds 
on the pressure function, P, where f3 does not. 

NUMBER INVARIANCE 
It is of interest to ask if the requirements of integral 

invariance of the phase-space density w.r.t. a parameter 
independent flow are different from the two conditions 
obtained above for differential invariance. It is possible 
to distinguish between the two concepts of total mass 
and total number. Total mass M will be defined as the 
integral of m over an open 2N-dimensional integration 
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chain. Total number, N, will be defined as the integral of 
m over a 2N-dimensional closed integration chain. 
These concepts are indeed distinct because they have 
different invariance structures. Certainly, the Liouville 
requirements for differential invariance imply both 
invariance of total mass M and total number N. How­
ever, invariance of total number does not imply invari­
ance of total mass. 

Specifically, ask: Is the integral of m over a 2N cycle 
an invariant with respect to a parameterized flow, y V? 
It follows that 

£yv~m = ~£yvm = §i(yV)dm = 0, 

for invariance, which implies that 

0/..1 
- i(yv)n = dg; 
Or 

(43) 

(44) 

n is defined to be the 2N + 1 volume dT A dq 1 A ••• A dp N' 

From (44), for invariance of N, it is necessary that 
yO/..l/OT be an integrating factor for the flow V in the 
sense that the flow (yO/..l/OT)V is divergence free; Le., for 
invariance of N, 

O(y(O/..l/OT)V O
) o(y(o/..l/oT)fo) o(y(O/..l/OT» 

~~-~--=-- + + = O. (45) 
oqo oPo OT 

These conditions of total number invariance are not 
equivalent to the two conditions required by the Liouville 
theorem. In fact, the Simple case for which O/..l/oT = 0 
leads to invariance of total number, N, for any flow 
while the total mass may not be conserved by the fl~w at 
all. 

In the sense conjectured above, a turbulent flow does 
not preserve total mass, but it could preserve total 
number. 

SUMMARY 
By considering those trajectories which allow the 

closed int.egral of action to vary in a conformal manner, 
an extenSIon of the classical Hamiltonian formalism to 
include dissipation and pressure effects has been 
achieved. The results have been utilized to show that 
continuity is explicitly dependent on the diSSipation (con­
formality) function r but is explicitly independent of 
pressure P. On the other hand, the flow group property 
(no turbulence) depends on both P and r. The pressure 
function P is intimately connected with a choice of 
parameterization and must be zero if the conformal 
invariance of the relative integral of action is absolute 
(parameter independent). An equation of motion, valid in 
inertial or non-inertial frames, is obtained for the con­
formal Hamiltonian flOWS, and frame-independent realiz­
ations of Bernoulli'S, Helmholtz's, and the radiated 
power theorems have been constructed. 
'E. Cartan, Lecons sur les invariants integraux (Hermann, Paris, 
1958). 

2W. Siebodzinski, Rocz. RPTMA Polskiego Towarzystwa Matematycz­
nego, Ser. I: Prace Matematyczne 14, I (1970). 

3L. H. Loomis and S. Sternberg, Advanced Calculus (Addison-Wesley, 
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Debye potentials in Riemannian spaces 
H. Stephani 

Fachbereich Theoretische Physik, Friedrich-Schiller-Universitiit, Jena, Germany 
(Received 18 April 1972) 

By means of Debye potentials it is possible to get all solutions of source-free Maxwell equations in 
vacuum from a single scalar equation. Sufficient conditions for the existence of Debye potentials in 
a given four-dimensional Riemannian space have been found. Some examples of metrics are given, 
including plane gravitational waves, metrics with spherical symmetry, and cosmological models. The 
method is generalized to Maxwell fields with sources and Maxwell fields in dielectric media. 

1. INTRODUCTION 

The integration of the source-free Maxwell equations 

Fin;n = 0, 

Fin = ~E.nabFab' i, n = 1, ••• ,4 (1) 

versal) degrees of freedom; so one would try to omit 
the function P. IT this is possible and the remaining 
functions II and <I> are subject to two decoupled dif­
ferential equations, II and <I> are the Debye potentials. 
Because we are interested in decoupled equations 
only, we, first, may put <I> equal to zero and analyze 
the remaining Maxwell equations 

0= Fam;m 
in curvilinear coordinates or in a given gravitational 
field is rather a complicated procedure, because (1) 
is a strongly coupled system of differential equations. 
Introduction of the potentials 

(2) 

= (II ... u").avm;m - (II.nu·),m;mva - 2(II ... u .. );mva;m 

+ (ll •• v n _p).m;mua - (ll ... v· -P).aum;m 

does not alter this essentially. Using Debye poten­
tials, the Maxwell equations are fully decoupled and 
proved to be equivalent to a single scalar equation. 
This was done for flat space1.2 and for static gravi­
tational fields with sphericalsymmetry.3 The aim of 
this paper is to give a covariant formulation of this 
method and to give an invariant characterization of 
all spaces admitting this method. 
The conform invai"iance of Maxwell equations en­
sures that the four-potential An of the general solu­
tion in a metric ds2 also is the four potential of the 
general solution in all conformally equivalent met­
rics ds2 = M2(Xi)ds2• All calculations and the in­
variant characterizations of the following chapters 
are assumed to concern ds 2 , whereas for applica­
tions in a given metric ds2 we have to look for a 
suitable factor M connecting both. 

2. DEBYE POTENTIALS OF SOURCE FREE 
MAXWELL FIELDS 

A. Four-potential and fields 

Performing a gauge transformation, the potential of 
an arbitrary field may be written as 

if the vector fields u i and Vi fulfill 

U i = u,i' 

The corresponding fields are 

Fam = (II,nun),avm - (II,nvn),mva - (II,nvn),aum 

+ (II,nvn),mua + P,aum - P,m u a 

+ (E m bin<l>,ba - E a bin<l>.bm )v j Um' 

It may be easily proven, that the v i component of the 
"electric" field Fabvaub does not depend on <1>, and the 
vi component of the "magnetic" field Fab va ubnot on 
II and P. 

B. Conditions for existence of Debye potentials 

Source-free Maxwell fields have only two (trans-
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(3) 

(4) 

(5) 

+ 2(ll,nvn - p),mua;m 

+ [(ll ... u").mvm - (ll ... v" -P).muml,a' 

These four differential equations (6) reduce to one, 
as we will prove later, if (6) has the structure 

for all functions ll. With the help of the conform 
factor M, we can make the vector field u. = u. satis­
fy uiu i ." = O. Then (7) is valid only if the fieWs ui 
and Vi ooey either 

uiuj = E3 = ± 1, 

v iva = E2 = ± 1, 

which means the metric may be written as 

ds2 = H2(x, y, U, v)[dx2 + E1F2(x, y)dy2] 

(6) 

(7) 

(Sa) 

+ E2dv2 + E3du2, E1 • E2 • E3 = - 1, (Sb) 
or 

vi, .. = Bviv .. , viVi = 0, 

Vi;n=CViV .. , u iu
i =l, 

with the adapted form of the metric 

ds2 = du 2 + dy2 + 2dzdv + 2H(U,y, Z, v)dv2• 

C. Derivation of Debye equation 

We now substitute (Sa) in (6). The calculations with 
vector fields of type (9a) run along the same lines, 
the corresponding results will be given in Sec. 2D. 

Equation (6) now reads 

o = ua[(ll, .. vn -.P) ,mom - E3 V(II.nvn - P),m u m 

+ E3 B(ll ,n un),mu m]+ va[- (II,nun).m;m 

+ E26(ll,nun).m v m - E2 V(ll.nv" - P).m v m] 

+ (P. m um).a • 

It shows that p.mu m is a function of u and v only. 
With help of a gauge transformation 
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(9a) 

(9b) 

(10) 

14 



                                                                                                                                    

15 H. Stephani: Debye potentials in Riemannian spaces 

Aa = Aa + h(u, v).a' (11) 

which changes II but does not alter., we can achieve 
p = O. This result remains true if we start with the 
combination., p. putting II equal to zero: P can be 
omitted completely. Maxwell equations including II 
and + then take the form 

[(uav m - vaum)D(n)];m - EampqD(.),m V pUq _= 0, (12) 

where the differential operator D is defined by 

According to (12), D(.) is a function of v and u: 

A special solution of this inhomogeneous differential 
equation is a function + 0 depending on u and v; but 
this.o gives no contribution to the potential Ai' 
Combining this with the analogous result for n, we 
see that the general solution of Maxwell equations is 
described by Debye potentials n and + satisfying the 
Debye equation D(n) = D(.) = O. The only possible 
exceptions are fields with D(n) = constI/~ or D(.) = 
const, which occur if the x-y resp.u-v surfaces are 
closed. 

D. Summary 

Decoupling of Maxwell equations by means of Debye 
potentials is possible in spaces conformally equiva­
lent to spaces characterized either by (Sa) and (Sb), 
with Debye operator 

(13) 

(14) 

(15a) 

or by (9a) and (9b) with Debye operator 

D(n) = n·";,. + 2Bn."v", (15b) 

To get the general solution of Maxwell equations, one 
has to solve the Debye equations 

D(lI) = D(.) = O. (16) 

with the exceptions mentioned above. Four-potential 

and fields then follow by mere differentiation. For 
static fields (independent of u), n,n v" and +,n v" are 
the electrostatic and the scalar magnetic potential, 
respectively. 

3. EXAMPLES OF SPACES 

We now give some examples of important spaces ad­
mitting the method of Debye potentials. According to 
the preceding chapter, their metric can be written 
in either of the forms: 

ds2 = M 2ds2 = M2(x, y, U, v)[H2(x, y, U, v) 

(17) 

x{dx2 + EIF2(X,y)dy2} + E2dv2 + E3du2 ], (IS) 

ds2 = M 2ds2 = M2{z, y, v, u)[du2 + dy2 + 2dzdv 

+ 2H(z, y, v, u)dv2]. 

From the symmetry of these line elements, one can 
easily see that if a space belongs to these classes at 
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all, there are at least two pairs of vectors satisfying 
(8a) or (8b) with two pairs of Debye potentials and 
two possibly different Debye equations, namely the 
vectors attached to the u-v and x-y hypersurfaces, 
resp, u-v and y-v directions. In addition, it should be 
kept in mind that the Debye equation is a covariant 
one. So-the vector fields u i and vi being given-they 
may be solved in any coordinate system of the space 
ds2 • 

A. Flat space 

Cartesian coordinates 

15 

ds2 = ds2 = dx2 + dy2 + dv2 - du2• (19) 

Spherical coordinates 

ds2 = ds2 = v2(dx2 + sin2xdy2) + dv2 - du2, (20a) 

ds2 = M 2ds2 = M2[M-2(dr2 - dt2) + dv2 + du2], 

M = r[2e"/1 + e2")] (20b) 

Cylindrical coordinates 

ds2 = M 2ds2 = ev2[e-2v{dz2 - dt2) + dv2 + du2]. (21) 

B. Spaces conformally flat 

Gravitational fields which are conformally flat4 in­
clude the important cosmological models with 
Robertson-Walker metric, which are conformally 
equivalent to the Einstein cosmos 

ds2 = ds2 = sin2v(dx2 + sin2xdy2) + dv2 - du2• (22) 

By investigating properties of electromagnetic fields 
in this cosmos, Infeld and Schild5 found as an «ac­
cident" that the potential can be constructed from the 
solution of a scalar equation which is exactly the 
Debye equation. 

C. Plane gravitational waves 

They are a special case of the line element (9b) resp. 
(18). 

D. Spaces conformally decomposible 

These spaces are characterized by the line element 

ds2 = M2(Xi)[dx2 + F2(x, y)dy2 + dv2 - K2(u, v)du2]. (23) 

Vacuum solutions of Einstein equations belonging to 
this class are discussed in detail by Petrov. 6 Special 
cases are the static degenerated solutions 7 including 
the exterior Schwarzschild solution. 
The class of nonvacuum solutions of this type con­
tains all metrics with spherical symmetry (static or 
not), e.g., Reissner-Weyl and interior Schwarzschild, 
and many others, e.g. the cosmological modelS 

ds2 = tds2=[rt A(z)+B(z)]2dz2-dt2+ t(dv2 + du2). (24) 

4. DEBYE POTENTIALS OF ELECTROMAGNETIC 
FIELDS IN DIELECTRICS 

The medium does not alter the degrees of freedom of 
the field. So it may be possible to describe the field 
with help of only two scalar functions satisfying two, 
in general, different equations closely related to 
Debye equations, if the medium fulfills certain condi­
tions. 



                                                                                                                                    

16 H. Stephani: Debye potentials in Riemannian spaces 

In the "physical" space ds2 the medium will be des­
cribed by its 4-velocity iti = M-1U i and the dielectric 
constant Ein = M-2Ein. In the metric ds2 = M-2ds2, 
to which all further calculations are referred, Max­
well equations then read 

pmn = ° Hmn = ° :n' ;n, 

Hmn =Fmn +F;aua[um(Ein_gin)_un(Eim_gim)). 
(25) 

An analysis in the metric (8a) and (8b) shows that lOin 
should fulfill the condition 

a h in = 0. ,n (26) 

This means that the medium is an inhomogeneous and 
anisotropic one, the preferred direction COinciding 
with Vi. The four potential is found to be 

Ai = n,n(unvi - vnu) + E/mncp,bvmun 

+ (a - 1)a-1n,nvnui> (27) 

and the modified Debye equations are 

D(II) + (b - 1) n ,inhin - b a-2a,i v i n.n v n ::: 0, 

D(cp) + [(1 - a)<I>,nunJ,iui = 0. 
(28) 

Whether in flat space Debye potentials have been 
used in dielectric media of type (26), is not within the 
knowledge of the author. Dielectric media with a = b 
in Schwarzschild space have been treated by Mo and 
Papas. 3 

5. DEBYE POTENTIALS OF FIELDS WITH 
SOURCES 

Up to now we were concerned with source-free fieldS 
or source-free simply connected regions of space. If 
one of the two vector fields, e.g., u i, is covariant con­
stant (in ds 2 , not in the physical space ds 2 ) 

ui,'n = 0, 

our method can be generalized to include fields with 
current density jm 

To do this we have to start from the potential (3),P 
not being omissible because of the new degree of 

J. Math. Phys., Vol. 15, No.1, January 1974 

(29) 

(30) 

16 

freedom, and write the current in the form 

jm::: [(vmun - um vi:,)T];n + EmbinS,bViun - (W,n un ), m 

+ W,n :n um (31) 

which ensures the validity of the equation of continu­
ity. Maxwell equations then turn out to be equivalent 
to 

D(II) = - T, D(cp) = - S, P = - W. (32) 

The first and the second are, of course, the generaliz­
ed Debye equations and the third one is the generali­
zation of Poisson equation 

To extract T, S, and W from a given current density, 
one has to solve 

[(W ua) .h in) = [j (gmn - hmn)). , .a ," ;n m ,n (33a) 

(33b) 

(33c) 

(33d) 

in the following way: Take the general solution W of 
(33a), which contains an arbitrary function W o{u, v), 
and determine W 0 together with T from (33b) and 
(33c). As in flat space,2 this is rather a complicated 
procedure. 
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In recent years Bellman and Krein have given independently a geometrical invariant imbedding of the 
resolvent K( t. y. x) (0 $ t. Y 5 x) of Fredholm integral equations with continuous kernels. In the case 
of symmetric kernels and constant parameters. the Cauchy systems for the symmetric resolvents have 
been discussed by several authors. In this paper. when the parameter depends upon the independent 
variable. we show how to solve exactly the Fredholm integral equation with the aid of invariant im­
bedding. In other words. by reducing the kernel to symmetric kernel. the Bellman-Krein formula 
for the Fredholm resolvent permits us to reduce the two-point boundary value problem to the 
initial value problem. 

1. INTRODUCTION V(t, x) = G(t) + g L(t, y)V(y, x)dy, (5) 

It is well known that the resolvent kernel K(t, y, x) 
(0::: t, y ::: x) plays a significant role in the theory of 
linear integral equations (cf. Courant and Hilbert l ). 

Bellman2 and Krein3 have provided independently a 
geometrical invariant imbedding of the resolvent K of 
a Fredholm integral equation with constant parameter 
and continuous kernel. Furthermore, several authors 
have shown how to use effectively an initial value 
method for the determination of the Fredholm integral 
equations with constant parameters and displacement 
kernels (cf. Sobolev4 ; Ueno 5; Bellman, Kalaba, and 
Ueno6 ; Kagiwada and Kalaba 7 •8 ; Hummer and Rybicki9; 
Bellman, Kalaba, and Ueno lO). 

The aim of the present paper is to show how the ini­
tial-value method for resolvents of Fredholm integral 
equations with kernels reducible to symmetric ker­
nels provides a feasible numerical solution using high­
speed digital computers, without referring to a system 
of functional equations for the global functions due to 
the polarity. 

2. BELLMAN-KREIN FORMULA 

Consider the integral equation for the function u(t, x), 

u(t, x) = g(t) + A(t) J; k(t, y)u(y, x)dy, 

where g(t) is a given forcing function, 0 < A(t) ::: 1 is 
an inhomogeneous parameter, and k(t, y) is a positive 
displacement kernel; e.g., 

k(t,y) = k(lt -yl), 
and 

k(y) = Jb e-ylz dw(z), 
a 

Y 2: 0, 0::: a < b. 

(1) 

(2) 

(3) 

This case is of great importance in the study of radia­
tive transfer in terrestrial, planetary, and stellar at­
mospheres. The solution u(t, x) is uniquely defined 
for x sufficiently small. 

On multiplying both sides of Eq. (1) by 1/-5(t) and in­
troducing a new function 

V(t, x) = u(t, x)/-5(t), 

we obtain the integral equation 
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(4) 

where 

G(t) = g(t)/-5(t), (6) 

and L is the symmetric kernel 

L(t, y) = [A (t)A (y)]1 /2k(t, y). (7) 

With the aid of the Fredholm resolvent K(t, y, x), the 
solution of Eq. (5) is expressed as 

V(t, x) = G(t) + J; K(t, y, x)G(y)dy. (8) 

The resolvent is symmetric, Le., 

K(t, y, x) = K(y, t, x), (9) 

because L(t, y) is symmetric with respect to t and y. 

In what follows, we shall derive the Cauchy system 
for the resolvent K(t, y, x). On differentiating Eq. (8) 
with respect to x, we have 

Vx (t, x) = K(t, x, x)G(x) + J; Kx (t, y, x)G(y)dy. (10) 

On the other hand, differentiating Eq. (5) with respect 
to x, we obtain 

Vx(t,x) = L(t,x)V(x,x) + 1; L(t,y)Vx(y,x)dy (11) 

Letting 4?(t, x) be the solution of the integral equation 

4?(t, x) = L(t, x) + g L(t, y)4?(y, x)dy (12) 

and comparing Eqs. (11) and (12), we have 

Vx(t, x) = 4?(t,x)V(x,x) = 4?(t,x) (G(X) + J; K(x,y,x) 

x G(Y)dY) • (13) 

A comparison of Eqs. (10) and (13) yields 

K(t, x, x) = 4?(t, x) 
and 

Kx (t, y, x) = 4?(t, x)K(x, y, x). 

Taking into account the symmetric behavior of the 
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(14) 

(15) 
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Fredholm resolvent K(t, y, x), we obtain the required 
Bellman-Krein formula 

Kx(t, y, x) = 4>(t, x)4>(y, x), 

where for the sake of definiteness we suppose max 
(t,y) = y. 

(16) 

Equation (16) is to be solved subject to the initial con­
dition 

K(t,y,y) = cI>(t,y), 0::::.; y::::.; x::::.; Xl' 

Recalling Eqs. (5) and (8), we note that the Fredholm 
resolvent K(t, y, x) satisfies the equations 

(17) 

K(t, y, x) = L(t, y) + J; L(t, z)K(z, y, x)dz, (18) 

K(t,y,x) = L(t,y) + r K(t,z,x)L(z,y)dz. (19) o 

3. CAUCHY SYSTEM FOR THE AUXILIARY 
FUNCTIONS 

On making use of Eqs. (7) and (14), Eq. (12) reduces to 

4>(t, x) =[>-(t)A(x)1/2k(t,x) +r [>-(t)A{z)]1/2k(t, z) o 
x K(z, x, x)dz. (20) 

Introduce B(t, x, v) as the solution of the integral equa­
tion 

B(t, x, v) = e-(x-t)/v...[i:{t) + J; [A(t)A(Z)]l/2 

x k(t, z)B(z, x, v)dz. (21) 

On making use of the Fredholm resolvent K(t, y, x), 
Eq. (21) can be rewritten in the form 

B(t,x,v)=e-(x-t)/v...[i:(t)+ g ...[i:(z)e-(x-z)/vK(t, z, x)dz. (22) 

Differentiating Eq. (22) with respect to x, we get 

Bx (t, x, v)= - i-~-(X-t)Iv...[i:(t) 

+ 1; ...[i:(z)e-(x- z)!v K(z, t, X)d1 + ...[i:(x)K(t, x, x) 

+ 1; ...[i:(z)e-(x-z)!v Kx(z, t, x)dz. (23) 

By recalling the Bellman-Krein formula for the Fred­
holm resolvent (16), Eq. (23) reduces to 

Bx(t, x, v) = -B(t, x, v)/v + cI>(t, x) (...[i:(X) 

+ 1; ...[i:(z)e-(X-Z)!vcI>(z,X)dZ) = - B(t,x,v)/v 

+ cI>(t,x)B(x,x,v), (24) 

where cI>(t, x) may be expressed as 

cI>(t, x) == ...[i:(x) J"b B(t, x, v)dw{v). (25) 

In the theory of radiative transfer, the derivation of 
the integro-differential equation (24) from the auxi­
liary equation (21) relies upon the superposition prin­
ciple (cf. Busbridgell). In this paper, however, the 
application of the Bellman-Krein formula permitted 
us to find Eq. (24) without using the theorem concern­
ing the trivial solution of homogeneous Fredholm in­
tegral equation (cf. Bellman, Kalaba, and Ueno10). 

Introduce a new function R(v, U; x): 
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R(v,u;x) == 1; e-<x-Y)Iv...[i:(y)B(y,x,u)dy. (26) 

Changing the order of integrations in Eq. (21) and 
putting t == x, we rewrite it in the form 

B(x, x, v) = v'A{x) ~ + J; v'A{z) 

x B(z, x, v)dz J"b e-(X-Z)!ftdW(U») 

= .y'i(x) (1 + lab R{u, Vi X)dw(U~ . 

Differentiate Eq. (26) with respect to x. Then 

Rx (v, ui x) == 5(x)B (x, x, u) _ R (v~ Uj x) 

(27) 

+ J; e-(x- y)!v5(y)Bx (Y, x, u)dy. (28) 

Recalling Eq. (24), after some manipulations, Eq. (28) 
becomes 

R (v w x) = - t! + 1) R (v w x) 
x , , \v u " 

+ A(X) (1 + lab R(V"UiX)dw(V'~ 

x (1 + J"b R(v, U'j X)dw(U/~ • (29) 

Equation (29) is a desired invariant imbedding equa­
tion governing the reflection function R(v, u; x), to­
gether with the initial condition 

R(v, Uj 0) = O. (30) 

Furthermore, it can be shown that R function is sym­
metric with respect to v and u, 

R(v, u; x) == R(u, v; x), 

because 

IX B(t, x, v)B(t, x, u)dt = R(v, Uj x) + 1X 
B(t, x, u) o 0 

(31) 

x B(t,x, v)dt -R(u, v;x). (32) 

The R function is similar to the reflection function of 
radiative transfer and neutron diffusion. Recall that 
B(x, x, v) is expressible in terms of R vis Eq. (27). 
Then, Eq. (24) may be used to compute B(t, x, v). 
Thus, for the computation of the resolvent kernel 
K(t, y, x), we use the Bellman-Krein formula (16) in 
terms of cI>(t, x) given by Eq. (25), which is deter­
mined by B(t, x, v). 

Let us summarize the set of equations for the calcu­
lation of K(t, y, x) with the aid of an initial-value me­
thod. The integro-differential equations are 

Rx(v, u; x) = - (-i; + ~ R(v, u; x) 

+ >-(x) (1 + lab R(V'Z;X)dw(z~ 

x (1 + lab R(z,UiX)dW(Z») , 

B 
Bx(t, x, v) = - v (t, x, v) 

+ >-(x) (1 + J"b R (v, z; x)dw (Z~ 
x lab B(t, x, z')dw(Z'), 

(33) 

(34) 
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Kx(t,y,X) = ~(t,x)~(y,x), (35) 

where 0 :s t, y :s x, and 

~(t,x) = 5(X)l.b B(t,x,v)dw(v). (36) 

The initial conditions are 

R (v, u; 0) = 0, (37) 

B(t, x, v)\ x=t = .fi..(t) (1 + lab R(v, u; t)dW(u~ , (38) 

K(t,y,x)\x;y = ~(t,y). (39) 

* Supported by the National Science Foundation under Grant No. 
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The spectrum of the Lee model Hamiltonian with Y interaction is studied; first of all we extend the 
work of Kato and Mugibayashi about the eigenvalues outside the essential spectrum and about the 
essential spectrum itself. Furthermore, it is proved that the singular-continuous spectrum is not 
present; properties of resonances and eigenvalues embedded in the continuous spectrum are obtained. 

INTRODUCTION 

In this work the spectral properties of the Hamiltonian 
of the Lee model with Y interaction1 are studied. As in 
Refs.2 and 3 the relativistic form of the free energy 
part is considered. 

In Sec. I we define the model and prove that the Hamil­
tonian is a self-adjoint operator. 

In Sec. IT we prove (Theorem 1) that the spectrum of 
the Hamiltonian, in the (1, 1) sector, for a square- integ­
rable cutoff function consists of 
(a) the essential spectrum, denoted b¥ u,,(H), given by 

ue(H) == [Mo,OO),whereMo == mintM,m + ILL 
M, m, Il are the bare masses of the particles. 

(b) The set of isolated bound state energies, denoted 
by u~ (H), is a bounded set of isolated finite­
dimensional eigenvalues smaller than M o' which 
is the only possible accumulation point. 

Furthermore, it is proved (Theorem 2) that the set 
ud(H) is not empty for values of the coupling constant A, 
larger than some constant AO; and also it is proved that 
if the Hilbert Schmidt norm of the integral equation ker­
nel of the energy eigenvalue problem is uniformly 
bounded by the constantKc for energies E < M O,4 then 
the set u~ (H) is empty for all values of the coupling 
constant A smaller than 1/..JK;. 

We remark that Theorem 1 and Theorem 2 extend the 
results of Ref. 2 on the eigenvalues outside the essential 
spectrum and about the essential spectrum itself. They 
describe quite completely the spectrum of the Hamil­
tonian. However there are two other questions that re­
main unanswered: 
(a) what are the properties of eigenvalues embedded in 
the continuous spectrum and (b) is the singular-contin­
uous spectrum present or not. In order to answer these 
questions we introduce in Sec. ill "the method of dilata­
tion invariance" developed in Refs. 5 and 6 in the 
mathematical theory of the N - body Schr~dinger opera­
tors, and extended in Refs. (7) and (8) to relativistic 
quantum theory. 

In Sec. ITI we extend the free Hamiltonian to a self­
adjoint analytiC family in the strip S"/2 == {z Eel 
I Imz 1< 71/2} of the complex plane C, and we investigate 
its spectral properties. We define the class of dilatation 
analytiC cutoff functions and we prove that for these 
cutoff functions the spectrum of the Hamiltonian consists 
of (see Theorem 3): (a) the continuous spectrum which 
is in fact absolutely continuous and given by the real 
interval [Mo' 00); (b) a bounded set of finite dimensional 
eigenvalues, different from M and m + Il, and accumulat­
ing at most at M and m + Il which may be eigenvalues. 
Properties of resonances and bound state wavefunctions 
are investigated. 

A last property of the discrete spectrum of the Hamil­
tonian is proved in Theorem 4. 
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Finally, for the definitions of vector-valued and opera­
tor valued analytic functions, and the classification of 
spectrum we refer to Ref. 9. 

I. THE MODEL 

The Lee model with Y interaction1 describes the in­
teraction of three particles, denoted, respectively, by 
V,N, and (). The allowed processes are summarized 
by the transitions V ~ N + (). The particles V and N 
are fermions; () is a boson particle. 

The Hilbert space of states denoted by JC is the 
direct sum of the Fock spaces10 of the three particles 
in the model. 

The free Hamiltonian is given by the following opera­
tor: 

Ho == j Ev(p) V"(p)VCp)d3p + j EN (q)N"(q)N(q)d3q 

+ jEa(k) ()"(k) ()(k)d3k. 

The operators V, V" ,N ,N" , (), ()" are annihilation and 
creation operators for the V,N, and () particles, respec­
tively; they satisfy the usual (anti-) commutation rela­
tions: 

{V(P),V"(P')}= {N(]i),N"(P')} = [()(P), ()X(p')] = 03(p_p'), 

the other (anti-) commutators are zero. 

Following Refs. 2 and 3 we consider the relativistic 
expression for the energy functions 

Ev(P) == (p2 + M2)1/2, EN (q) = (q2 + m2)1/2, 

Ea(k) = (k 2 + 1l2)1/2, 

where M, m, and Il are, respectively, the masses of the 
V,N, and () particles. 

It can be proved2 that the free Hamiltonian is a self­
adjoint, positive, operator with a dense domain [denoted 
by D(Ho)]. 

The interaction Hamiltonian is given by 

H1(p) = A f p(P,q,k)d3pd3qd3k{V"(P)N@()(k) 

+ N"(Q)()"(k)V(p)} , 

where pep, q, k) is a real,ll square-integrable, cutoff 
function: 

and A is the coupling constant. 

One of the characteristic properties of the Lee model, 
which makes it solvable, is the existence of two con­
served quantities: the "baryonic" number Nl == Nv + NN 
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and the "charge" Q = Ny + Ne ; here Ny,NN' andNe are 
total number operators for N, V and e particles, respec­
tively: 

Ny == J V+(p) V(p)d3p, 

NN == J N"(ij)N(ij)d3q, 

Ne == J e"(k)e(k)d3k. 

This property implies that X decomposes in the follow­
ing way: 

where JC(n
1

,n:a> is the subspace of X corresponding to 
the eigenvalues nl' and n 2 of the operators N 1 and N 2 

(nl' and n2 are arbitrary natural numbers); and that 
the total Hamiltonian 

can be written in the following way: 

H(p) = $ H(p)lx(" " ), 
"1on2=0 l' 2 

where H(p) Ix( .. .. ) is the restriction of H(p) to XI" n \. 
l' 2 ' l' 2' 

In each JC (n n) the particle number representation10 
l' 2 

has a finite number of components; thus H1(p) Ix( "1. n 2) 

is a bounded operator2; then H(p) is self-adjoint on the 
domain 

co 

ED(Ho)i E_ ii H(P)1/I(n
1

, .. ;II2<OO}. 
nIt n2 -O 

In the following sections we will fuvestigate the spec­
trum of the total Hamiltonian in the sector (1,1) (which 
is the first nontrivial sector). 

for all E < M o, 

the set ad(H(p» is empty for every A smaller than 

Ac = 1/.JK;. 

Proof: It can be proved2 that the eigenvalue equa­
tion (H - E) 1/1 == 0, for E < M o' is equivalent to the 
following integral equation: 

<PCp) = A2 f K(p,p',E) <pCjj')d3p', 

where K(p,p' ,E) 

=1 d 3 q d 3k p(p,q,k) p(p',q,k) 
[Ev(P) - E]1I2[EN(q) + Ee(k) - E][Ev(p') - E]1/2' 

<p(P) = [Ev(p) - E]1/2 a(p). 

The function <p(P) is square integrable because 1/1 belongs 
to D(Ho)' 
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FOR A SQUARE-INTEGRABLE CUTOFF FUNCTION 
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In the particle representation10 a general element of 
X (1,1) is expressed as12 

1/1 = {a(p), b(q,k)}, 

and its norm is given by 

The first component correspond to the single V state, 
and the second to the N + estate. 

The spectral properties of the Hamiltonian in this 
sector are given in the following theorems. 

Theorem 1: If the cutoff function,p(p,q,k), is 
square-integrable the spectrum of the total Hamiltonian 
consists of: (a) The essential spectrum a .(H(p» == [Mo,oo), 
where M 0 == min{M, m + t.t}, (b) The set of isolated 
bound state energies (a~(H(p»: is a bounded set of iso­
lated finite-dimensional eigenvalues smaller than Mo 
(this is the only possible accumulation point). 

Proof: It follows from the definition of Hj(p) that 

H/p)1/I={f d3qd3k p(P,ij,k) b(q,k), J d3p p(p,ij,k)aCP)}' 

where 1/1 = {a(p),b(q,k)} E X. 

Thus, H j (p) is a compact operator (Ref. 13, p. 176). 
It is well known14 that any compact perturbation 

leaves invariant the essential-spectrum of a self-adjoint 
operator; thus 

a.(H(p» = a.(Ho). 

It is easy to see that H 0 has a purely continuous 
spectrum which consists of the half-line [Mo,oo). 

The fact that a~(H(p» is a bounded set follows from 
Ref. 9, p. 291. 

Theorem 2: The set a;(H(p», defined above, is not 
empty for every A larger than some AO; and if there 
exists a positive constant,Kc ' such that the following in­
equality is satisfied4 

The kernel K(p,p', E) is square integrable, thus, the 
equation is of Fredholm type .15 

As the kernel is symmetric the integral equation has 
solutions, at least for one E, for every A larger than 
some AO (see Ref. 2 and Ref. 15, p. 73), and this proves 
the first part of the theorem. It is clear that (if the 
constant Kc exists) 

then, if A < 1/..fK; the integral equation has no solution 
forE< Mo (see Ref.13,p.151). QED 

These two theorems describe quite completely the 
spectrum of the total Hamiltonian; but there are two 
questions that remain unanswered: 
(a) which are the properties of eigenvalues embedded 
in the continuous spectrum, and (b) is the singular­
continuous spectrum, empty or not. 

To give an answer to these questions we will intro-
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duce the method of dilatation invariance developed by 
Refs. 5 and 6 in the mathematical theory of N -body 
SchrHdinger operators, and extended to relativistic 
quantum theory by Refs. '1 and 8. 

III. THE SPECTRUM OF THE TOTAL HAMILTONIAN 
FOR A DILATATION ANALYTIC CUTOFF FUNCTION 

In this section we will study the properties of eigen­
values embedded in the continuous spectrum, resonances, 
and we will prove that the singular-continuous spectrum 
is empty, for a class of dilatation analytic cutoff function. 

Let U(y),y E R, be the strongly continuous unitary 
representation on JC of the dilatation group defined by 

{U(y)lP} = {e-3 y/2 a(e-Y p),e-3 y b(e-Yij,e-Y k)} ,Y E R, 

where 

Then, we have the following lemma: 

Lemma 1: The family of operators Ho(Y) defined by 

HO(Y) = U(y)HoU(-y),y E R, 

extends to a self-adjoint, analytic family in the strip of 
the complex-plane Sft/2 = { Y E ell Imy I < 1T/2}, 
with domain [D(Ho(Y))] equal to the domain of Ho. 

Proof: It follows from the definition of Ho(Y) that 

{Ho(Y) lP} = {E v( y,p) a(p), (E N (y, q) 

+ Ee(y,k»b(q,k)},y E R, 

where lP = {a(p),b(q,k)} E D(Ho(y»,and 

Ev(Y'p) = ..Je-2Yp2 + M2, 

EN(y,q)= ..Je-2Yq2 + m 2, 

and 

Thus,HO(Y)'y E R, extends to a family of operators 
for y E S"/2' 

It can be proved that Ev(Y,p), and [EN (y, q) + Ee (y, k)] 
are differents from zero for all p,q,k E [0,(0) if 
y E S"/2; thus, there exists four functions of y [MI (y), 
M 2(y),Ms(y),M4(y» such that 

and 

0< I E,,(O,p) 1 < MI(y) < 00, 

E" (y,p) 

0< I Ev(Y'p) 1< M2(y) < 00, 

E v(O,p) 

0< I EN(O,q) + Ee(O,k) 1< MS(Y) < 00, 

EN(y,q) + Ee(y,k) 

0< I EN(y,q) + Ee(y,k) 1< M4(Y) < 00, 

EN(O,q) + Ee(O,k) 

p,q,k E [O,oo),andy E Sff/2' 

This implies that 
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II HolP II ~ (max{MI (y), Ms (y)}) II Ho(Y) lP II Ho(Y) lP II, 
lP E D(H o (y}), 

II Ho(Y)lP II ~ (max{M2(y),M4(y)}) II HolP II, lP E D(Ho)' 

Then D(Ho(Y» = D(Ho),y E 8"/2' Le., the domain of 
Ho(Y) is independent of y for y E 8 ft/ 2• 

Previously7 we proved that 

1 E v(Y2'P) - E"(YI'P) I 

Y2 - Y1 -2R Y) 
~ 2 M1 (Y1)1 Ev(O,P)l, (

€+e el 

cos ImY1 

where Yv Y2 E 8"/2' I Y2 - Y1 1< 71(Y1)' € > 0, and 71(Y1}>0. 

This implies (together with a similar estimation for 
the N and 8 particles), by the Lebesgue's dominated con­
vergence theorem, that 

{
Ho(Y2) - Ho(Y1} lP} > {(~ E

1J
(y,P) a(p), 

Y2 - Y1 Y2 ~ '11 dy'J Y Yl 

( dd (EN(r,q) + Ee (y,kj~ b@,k)}, 
r ~Y=n 

in the strong topology in JC for any lP in the domain of 
Ho· 

Thus,Ho(y),r E 8"/2' is an analytic family. 

Since Ho(r) is self-adjoint for y E R we have that 

HofY) = H~(y} for all y E 8"/2 • 

It is clear that Ho(r),y E 8 11 / 2, can be written as 
follows: 

QED 

Ho(Y) = Ho.v(Y) EB(HO.N(y) 0 1+ 10 Ho,o(Y))-; 

where Ho,v(Y) is defined as 

(Ho,,,(y)4?)(p) = (e-2yp2 + M2)1/24?(p), '1 E Sff/2' 

in the domain of all4? in £2(RS) such that C..Je- 2yp2 + M2 
4?(p» is again in £2(R3.)(and a similar definition for 
HO,N(Y}' and H o, o(Y»' The operator (HO,N(r) 0 1 + t 0 

Ho,a(Y»- is the closure of the operator (HO,N(r) 0 
1 + t 0 Ho•a (y». 

Then, we have the following lemma. 

Lemma 2: The spectrum of Ho(Y) [denoted by 
a(Ho(Y» for y E 8 11/ 2 ] is given by 

a(Ho(Y» = a(H o. v (y» U(a(H O,N (y» + a(Ho.o(Y»' 

Proof: It follows from the definitjon of the spec­
trum and the expression of Ho(Y) given above that 

a(Ho(Y» = a(Ho,,,(r»U(a(Ho,N(r) 0 1 + 10 Ho,a(Y»-)' 

In a previous paper7 we proved that 

a(HO,N(Y» £{Z E C II argz I ~ Ilmyl}' 

a(H 0, a (y» f {Z E C II arg z I ~ I 1m y j} , Y E 8~/ 2 . 

The operators HO,N(Y) and Ho.e(Y) are normal, thus9 

II(Ho,N(Y) - Z)-1 11 

= {dist[Z,a(Ho.N(y»]}-1,Z E C\ a(HO,N(Y»' 
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II (HO, 6 (1') - Z)-ll1 

= {dist[ Z, a(H 0,6 (y»]} -1, Z E C \ a(HO, 6(1'»; 

but7 

dist (Z, a(HO,N (1'))) ~ I Z II sin ( I argz I - I Imy I), 
dist (Z, a(Ho, 6 (y))) ~ I Z II sin ( I argz I - lImy I), 

for I argz I > lImy I. 
Then, by a lemma of Ichinose,16 we have that 

a(HO,N(Y) i8I 1 + 1 i8I HO,6(Y»- = a(HO,N(Y» + a(HO,6(y». 

QED 

Remark 1: It follows from Lemma 2 that if the 
mass of the 9 particle is equal to zero the spectrum of 
Ho(Y) is equal to 

a(Ho(Y» = {Z Eel Z = (e-2yp2 + M2)1/2,or 

Z = (e-2Yq2 + m 2 )1/2 + e-Yk, 

for some p,q,k E [O,oo)}, 

and it has the simple shape shown in Fig. l. 

Remark 2: In the original Lee mod ell the recoil of 
the V and N particles is neglected. In that case the free 
Hamiltonian is equal to 

{H01/l} = {Ma(]), [m + (k 2 + fJ. 2)l/2]b(q,k)}, 

1/1 = {a(p),b(q,k)}, 

in the domain,D(Ho), of all 1/1 in JC such that 

{Ma(p); [m + (k 2 + fJ. 2)1/2]b(q,k)} is again in JC. 

Clearly this Hamiltonian extends to a self-adjoint, 
analytic family in S"/2' and its spectrum is equal to 

a(Ho(Y» = {M U m + a(Ho,e(Y»}, y E S"/2' 

and has the shape shown in Fig. 2. 

We will define now a class of cutoff functions which 
allows us to extend the total Hamiltonian to a self­
adjoint analytic family in a strip Sb' 0 < b < 7T/2, of the 
complex plane. 

Definition: A dilatation analytic cutolf function is 
a real square-integrable function pep, q,k), having the 

FIG. 1. 
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Imy 

FIG. 2. 

following property: the family of real, square-integrable 
functions 

(U(y)p)(p,q,k) = e-Qy/2 p(e-Y p,e-Y q,e-Y k),y E R, has 
an extension to an analytic family9 of square- integrable 
functions [they will be denoted by p (y, p, q, k)] 1 7 for y in 
an open connected domain of the complex plane. 

Lemma 3: If the cutoff function pcp, q, k) is dilata­
tion analytic in a strip Sa' a > 0, the family of operators 
U(y)(Ho + H[ (1'» U(- y),y E R, extends to a self-adjoint, 
analytic family for y E Sb' where b = min {a, 7T /2}, with 
domain D(H(y» equal to the domain of Ho. 

Proof: It follows from the definition of H [ (p), and 
of 

U(y),y E R,that 

U(y) Hip) U(- y) = H[(U(y)p),y E R. 

Clearly the family 

H[(p,y) = H[(p(y»,y E Sa' 

is an extention to Sa of the family U(y)H[(p)U(-y), 
l' E R. 

The argument given in Theorem 1 implies that Hip,y), 
y E Sa' is a family of compact operator. It follows from 
the following estimation: 

valid for Y1'Y2 E Sa, and 1/1 E JC that the family is ana­
lytic. This implies (together with Lemma 1)9 that the 
family U(y)[Ho + H[(p)]U(- y) extends to a self-adjoint 
analytic family in the strip Sb' where b = min {a, 7T /2}, 
with D(H(p,y» = D(Ho)' QED 

Lemma 4: If the cutoff function p (ji, q, k) is dilata­
tion analytic in a strip Sa, a > 0, the spectrum of the 
total Hamiltonian,H(p,y), for 0< limy 1< b,where 

b = min {a, 7T/2}, consists oflS 

(a) The essential spectrum: ae(H(p,y» = a(Ho(Y». 
(b) The set of bound state energies is a bounded set of 
isolated, finite-dimensional real eigenvalues, indepen­
dent of y, with M and m + fJ. as the only possible accu-
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mulation points. 
(c) The set of nonreal resonance energies is a set of 
isolated finite dimensional eigenvalues. A given reso­
nance energy is independent of Y as long as it is not 
absorbed in the essential spectrum. 

Proof: We have proved in Lemma 3, that the opera­
tors HI (p, y) are compact (thus, bounded); this implies 
(together with the fact that the Ho(Y) are normal opera­
tors) that 

II HI (p, y}(Ho(Y) - Z)-l II "" II HI (p, y) II [dist(Z, a(Ho(y)))), 

Z E C \ a(Ho(Y». 

The remainder of the proof goes along the same lines 
as in Refs. 5-8; we omit the proof here. QED 

Theorem 3: If the cutoff function pCP, q,f) is dila­
tation analytic in a strip Sa' a > 0, the spectrum of the 
total Hamiltonian H(p) consists of: 

(a) The continuous spectrum [Mo,oo). This spectrum is 
absolutely continuous, Le.,3Cs.c. = 1/>, and 3C = 3C a . c. EB 3Cp• 

J 

for all E E R \ {M, m + /l}, and some Yo, such that, 
0< 1 Imyo 1< b, where b = min{a, 1T/2}, then, the total 
Hamiltonian H(p) can have eigenvalues only at the 
points M and m + /l, for every A smaller than 
Ac = 1/.JK;. 

Proof: We can prove by the argument developed 
in Theorem 2 that (if the constant Kc exists) the total 
Hamiltonian H(p, Yo) has no eigenvalues different from 
M and m + 1.1. for every,\ smaller than ,\ c = 1..JK;; but this 
implies, by Theorem 4, that the same result is valid for 
H(p). QED 
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Unitary representations of SO(n, 1) 
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All unitary representations of SO(n. 1) have been obtained in the group chain 
SO(n. 1) ::J SO(n) ::J SO(n - 1) ::J ••• ::J SO (2). The branching laws have been explicitly 
formulated. These results follow from the observation that the matrix elements of the "noncompact" 
generators of SO(n. 1) differ from the corresponding matrix elements of the same generators of 
SO(n + I) by a factor of~. The branching laws then follow from the unitarity condition. It is 
also observed that the invariants of SO (n. 1) have the same eigenvalues as the invariants of 
SO(n + I). Finally we show that the normalized raising and lowering operators in SO(n + 1). 
obtained by Pang and Hecht in graphs. and by Wong in algebraic form. can be similarly defined and 
applied to SO(n. 1). 

INTRODUCTION 
The noncompact groups SO(n, 1) have had important 

applications in physiCS. In the simplest case, SO(2, 1) is 
the little group, for a spacelike momentum, of the quan­
tum mechanical Poincare group. It is the group upon 
which the theory of complex angular momentum is built. 
It has been investigated exhaustively by Bargmann.1 
Next comes the Lorentz group SO(3, 1) whose unitary 
representations were studied by Gel'fand and Naimark.2 
There is no doubt that the Lorentz group has had a vast 
influence on relativistic physics. The next group, 
SO(4, 1), is the De Sitter group, whose unitary represen­
tations were investigated by Thomas3 in as early as 
1941. In elementary particle physiCS, the group SO(4, 1) 
has been applied to the hydrogen atom by Barut et ai.4 
The group SO(5, 1) has been investigated by Kuriyan 
et ai.s 

In order to understand fully the group SO(n, 1) it is 
useful to consider properties which are common to the 
group as a whole, Le., for any n. Fortunately, these 
properties do exist. The representations of SO(n, 1) 
have been considered by Hirai, Ottoson, Chakrabarti, 
and Schwarz.6 Our results agree with theirs, but are 
presented in a different, and, we believe more complete, 
way. The discrete and degenerate representations of 
O(P, q) have been considered by Nikolov.7 

In Sec. 1 we mention briefly the general properties 
of SO(n, 1). In Sec. 2 we present the general formulas 
for the matrix elements of the generators of the group 
in the decomposition SO(n, 1)::J SO(n) ::J ••• ::J SO(2). 
In Sec. 3 we classify the unitary representations of the 
Lie algebra SO(n, 1), obtaining the so-called branching 
laws. One of the results of the classification is that 
there are no "discrete series" for SO(2k - 1,1). 
Another result is that in the Lie algebra of the Lorentz 
group SO(3, 1) there is a new (continuous) representation 
which has not been considered by Gel 'fand and Naimark. 
Our results therefore include all the previous results 
obtained in the particular cases of SO(2, 1), SO(3, 1), 
SO(4, 1), and SO(5, 1), but are more complete and are 
valid for general n. In Sec. 4 we show that the invariants 
of SO(n, 1) have the same eigenvalues as the invariants 
of SO(n + 1). 

Recently Patera8 has shown that the raising and lower­
ing operators in U(P + 1) obtained by Nagel and Moshin­
sky9 can be similarly applied to the noncompact group 
U(p,I). We show in Sec. 5 that this is also true for 
SO(n, 1), Le., the normalized raising and lowering opera­
tors in SO(n + 1) obtained by Pang and Hecht10 and by 
Wongll can be Similarly applied to SO(n, 1). 

I. GENERAL PROPERTIES OF SO(n,1) 

SO(n, 1) is the group of unimodular transformations 
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in an (n + I)-dimensional real space which leave the 
following form invariant: 

The generators of the Lie algebra of SO(n, 1) are 
represented by antisymmetric J ij , i,j == i, 2, 3, ... , 
n + 1. J ij == - J ji • They satisfy the follOwing commuta­
tion relations: 

whe:eg;L1 ==g22 == ••• ==gnn ==-g .... 1.n+1 == 1, gij == 0 
for z "".1. 

If one denotes the generators of SO(n + 1) by L ij , 

then one finds that 

Jij == Lij for i,j < n + 1, (2) 

(3) 

It is easy to see that the invariants of SO(n, 1) are12 : 

12k (R) == L; i L;; L;; ., .L;; (4) 
12 23 34 kl 

Racah invariants: 

12k(L)==( t (-I)PL; ; L; ; ... L; i \2 
; =1 1 2 3 oi k-1 kJ 
s (5) 

Louck invariants: 

with substitutions from Eqs. (2) and (3) for Jij • For 
example, in SO(2, 1), the Casimir invariant is 

which can be obtained from the Casimir invariant of 
SO(3), 

by interchangingJ12 with L 12 ,J13 with iL13 , and J 23 
with iL23 • 

(6) 

(7) 

The rank of SO(2k, 1) is k; the rank of SO(2k - 1,1) is 
also k. In general, a representation of a group of rank r 
is labeled by r numbers, corresponding to the r indepen­
dent invariants of the group. 

The unitary representations of SO(2, 1),SO(3, 1), 
SO(4, 1), and SO(5, 1) have been studied by Bargmann,1 
Gel'fand and Naimark,2 Thomas,3 and Kuriyan et ai.,S 
respectively. They are, of course, all infinite-dimen­
sional. Here we wish to study the group SO(n, 1) as a 
whole. We start our investigation by determining the 
matrix elements of the inifinitesimal generators of the 
group SO(n, 1). 

Copyright © 1974 by the American Institute of Physics 25 
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II. MATRIX ELEMENTS OF THE GENERATORS 
OF SO(n,1) 

We shall state our results in the form of a theorem. 

Theorem I: The matrix elements of the noncompact 
generators of 80(n, 1), i.e.,Jn+1,i' are equal to ...J- 1 
times the matrix elements of the corresponding genera­
tors of 80(n + 1) in the decomposition 80(n, 1) => 80(n) => 
80(n - 1) :J ••. :J 80(2). 

Proof: The noncompact generators of 80(n, 1), i.e., 
I n+1 • i' where i = 1,2, ... ,n, can be classified as the n 
components of a tensor operator in 80(n), satisfying the 
definition 

(8) 

where i,j = i, 2, ... ,n. T a' T b are tensor operators 
labeled by the Gel'fand states of 80(n), and are linear 
combinations of J n+1 i' (b I Jij I a) is the Gel 'fand Zetlin 
matrix elements of the generators of SO(n). 

These tensor operators transform in exactly the 
same way as the generators of SO(n + 1). For example, 
if in 80(5), i (L52 - iL15 ) transforms as the tensor 
operator T1/2 1/.2 in SO(4) = 80(3) 181 80(3), then in 

-1/2-1/2 
SO(4, 1), i (J52 - w15 ) also transforms as the tensor 
operator T 1/2 1/2 in 80(4). This is because in Eq. (8) 

-V2-1/2 
the commutation relations between J ij and T a are not 
affected by the metric g n+1, n+1 = - 1 in Eq. (1). 

USing the Wigner-Eckart theorem, one can then write 
down the matrix elements of these generators as the re­
duced matrix element times the Clebsch-Gordan coeffi­
cients in 80(n): 

< CiT a I b > = ( ell T II b) (b a I' c), 'Y Q {3 a (3, Q 'Y (9) 

121z,a = m 21z , a + k - a, 12k-l,a = m 2k-l,a + k - a, 

26 

where a, b, c are irreducible representation labels for 
SO(n) and Q, (3, 'Yare state labels for 80(n - 1) :J 
80(n - 2) => ••• :J SO(2). The last term on the right-
hand side of Eq. (9) is the Clebsch-Gordan coefficient 
of SO(n). The reduced matrix elements, which must be 
functions of r additional variables, where r is the rank 
of the group, are to be solved by the equations from (1): 

(10) 

where k is a constant, i,j = 1,2, ... ,n. 
In 3J.most all the previous investigations of the 80(n, 1) 

groups, i.e., in 80(2,1),80(3,1),80(4,1), by Bargmann, 
Gel'fand and Naimark, and Thomas, and in 80(n, 1) by 
Ottoson, much effort has been spent on solving Eq. (10). 
However, we wish to point out that it is not necessary to 
solve (10), as it were, from the beginning. The solution 
is known. All one has to do is to compare it with the 
corresponding commutation relations in 80(n + 1). One 
then finds 'that in that case 

(11) 

Therefore, if one substitutes the reduced matrix ele­
ments of the generators in the compact group by the 
same value multiplied by r-r. for the reduced matrix 
elements of the noncompact group, one can satisfy Eq. 
(10) in all cases. This proves our theorem, since the 
Clebsch-Gordan coefficients of 80(n) cannot be differ­
ent in SO(n, 1) => SO(n), and in SO(n + 1) => SO(n). 

It is easy to check that the theorem is true for 
SO(2, 1), 80(3, 1), SO(4, 1), and SO(5, 1), since the matrix 
elements of these groups are all known. We shall 
therefore write down the matrix elements of the genera­
tors J2k.2k-1 for SO(2k - 1,1) andJ2k+1,2k for SO(2k, 1). 
Matrix elements of the other generators can be obtained 
from these by repeated application of the commutation 
relations in (1). 
With 

I 
n k-1(12 12 )Uk (12 12) 11/2 - a~1 2/.0-2, a - 2k-l,j b=l 2k,b - 2k-l,j 

= - i -1~-k--l-,-j-(4-1-~-k--1-'J-' --1-)-n-!~-J-(-1~-k--l-,-a---1~-k--l-,-j)-[(-l-2k---1-, a---1-)2-_-1-~-Iz_-1-'J-' ] , (12) 

(13) 

- i \ n!~t - (l2k-l, a -12k,: -1)(12k-l,a + 12k,j)n:=1(12k+1,b- 12k,j-1)(l2k+l,b +12"';)ll/~ 

2 na"'J (l~k,a - 1~k,jlf1~k,a- (l2k,j + 1)2] (14) 
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Thus a representation of SO(2k, 1) is represented by 
the Gel 'fand pattern 

m 2k+1 .1 m 2k+1 ,2 

m 2k ,l m 2k,2 

and a representation. of SO(2k - 1,1) is represented by 
the Gel 'fand pattern 

m 2k,l m 2k ,2'" m2k,. 

m 2k- 1 ,l ... m 2k- 1 ,k-1 

The next step is to determine the relation between the 
various m's, or what is sometimes called the branching 
law. In order to do this, we have to use the unitarity 
condition. 

III. CLASSIFICATION OF THE UNITARY 
REPRESENTATIONS OF SO(n,1) 

The unitarity condition states that J2k 2k-1 and 
J 210+1 2k are Hermitian matrices. This requirement 
leads to two conditions. The first condition is that the 
diagonal matrix elements for J2k ,2k-1 must be real. 
This means B 2k ,2k-1 or 

. n!:ll. 12k-2 an~o112k a t ' , 

n ::t 1210- 1 , a (12k-1,a - 1) 

is real. 

The second condition is that the product under the 
square root in Eqs. (12) and (14) must be positive. 
These two conditions enable us to classify all unitary 
irreducible representations of SO(n, 1). The results 
are as follows. 

A. Discrete series: All m's either discrete integers or 
half-integers, excluding 0 

1. ForSO(2k-1,1) 

There are no discrete series. 

The reason is that from (13) it necessarily follows 
that one of the l's must be either pure imaginary or 
zero. This is incompatible with the definition of a dis­
crete series. 

2. For SO(2k, 1) 

We obtain the following branching laws. All m's are 
either integers or half-integers: 

m 2k+1 ,l ~ m 2k+1 ,2 ~ •• , ~ m 2k+1 ,2k' 

m i +1 ,j ~ mi,j ~ m i +1 ,j+1' j ~ i< 2k, 

S = (0,1,2, ... ,2k), 

(15) 

(16) 

(17) 

m 2k+1 • i-1 + 2> m 2k , i > m 2k+1 , i for all i ~ S, (18) 

m2k+1,i+1>m2k,i>m2k+1,i+2 - 2 for all i> S, (19) 

m 2k+1 ,O = ro, m 2k+1 , k+1 = - ro. (20) 

Note that (15) and (16) are the same as the branching 
laws in SO(2k + 1), but that (17), (18), (19), (20) are differ-
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ent. However, they are similar to the branching laws of 
U(2k,1). It is easy to see that the dimension of the rep­
resentation is always infinite. 

B. Continuous Series 

1. ForSO(2k-1,1) 

1.1: 

m 2k , k = i c, creal, (21) 

m 2k,l ~ m 2k, 2 ~ ••• ~ m 2k , k-lt (22) 

m i +1 ,j ~ mi,j ~ m i+1 ,j+1' j ~ i< 2k - 1, (23) 

m 2k , i-1 + 2 > m 2/r!, i > m 2k , i for all i -'S S, (24) 

m 2k, i+1>m2k-1,i>m2k, ;+2-2 for allS < i < k-l, (25) 

S = (0,1,2, .. . ,k - 1), 

m 2k ,O = ro, m 2k,k-1> - ro. 

We shall call this the principal proper series. 

1.2: m 2k 10 = O. All others from (22) to (27) the 
same as above. We shall call this the supplementary 
improper series. 

(26) 

(27) 

1.3: m2k 10-1 = - 1. (22) to (27) the same. We shall 
call this the supplementary proper series. 

These names are derived from consideration of the 
Lorentz group SO(3, 1). According to Gel'fand and Nai­
mark, the Lorentz group is characterized by two num­
bers (loll) or (koc). They correspond to our notation 
as follows: 

(28) 

The reduced matrix elements are given by 

A = ilol1[1(l + 1)]-1, 

c = i(lt1(12 - 15)1/2(12 - If)1/2(412 - 1tl,t2. 
(29) 

Thus 1.1 and 1.3 belong to the so-called principal and 
supplementary series, respectively. However, in the 
case of SO(3, 1) it can be seen from the matrix elements 
of the generators that the role of 10 and 11 can be inter­
changed. If one does so for the supplementary series, 
one obtains the supplementary improper series, 1. 2. 
What happens when one interchanges 11 and 10 for the 
principal series? Here the situation is more compli­
cated. But before we proceed, we wish to remark first 
that, as long as we are dealing with the representations 
of the Lie algebra, the restriction of 10 to integers is 
really not necessary in the derivation of the matrix ele­
ments of the generators. (This follows from the proof 
of Theorem 1.) Thus we shall remove the restriction. 
It then follows that there are two more cases to be con­
sidered. The first one we shall call 

1.4: Continuous-discrete series, or principal im­
proper series, where m 2k 10-1 = - 1 + ic, creal, 
m 2k-l, 10-1 ~ I m 2k ,k I, and all others from (22) to (27) 
the same. 

The second one we shall call 

1.5: Continuous-continuous series, where 
m 2k, 10-1 = - 1 .+ ie, creal, 0 < m 2k ,k < 1, and all 
others from (22) to (27) the same. 

One should note that 1. 5 also has a counterpart, 
which is 
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1.6: m 2k k = ie, - 1 < m 2k k-l < O. All others 
from (22) to (~7) remain the same. It is suggested that 
1. 6 might be called the proper continuous continuous 
series, and 1. 5 the improper continuous continuous 
series. It should be noted that 1. 5 and 1. 6 have not 
been considered by Gel'fand and Naimark. 

Let us examine further why this representation has 
not been included in Gel'fand and Naimark's list. If one 
follows Naimark's derivation2 of the principal series, 
one finds that (on p.148, Eq. 27), by virtue of the single­
valued nature of the function X(A) 

and since X2(</) = eim<l>,m,which corresponds to our lo, 
must be an integer. Thus the principal series, where 
m is an integer, corresponds to the single-valued nature 
of the function X(A). 

If, however, one relaxes the restriction of the single­
valued nature of X(A), and allows the function to be multi­
valued, then it is no longer necessary to restrict m to 
integers, as long as 0 < m < 1. The representation is 
well-defined. It is not equivalent to either the principal 
or the supplementary series, in that its matrix elements 
cannot be reproduced by either the principal or the 
supplementary series, and the space L2(z) can be re­
garded as the set of all measurable functions f(z) of the 
parameter z == x + iy satisfying the condition 
J.: i: 1 f(z) 12 ax dy < co. Thus it is a multivalued, in­
tegrable representation of the Lie algebra 50(3,1). 

To sum up the results for 50(3,1): There are gene­
rally speaking six unitary irreducible representations. 

1. Principal proper which is the same as the principal 
series of Gel 'fand and Naimark. 

2. Supplementary proper which is the same as the 
supplementary series of Gel'fand and Naimark. 

3. Principal improper, which is obtained from principal 
proper by interchanging lo and 11' 

4. Supplementary improper which is obtained from 
supplementary proper by interchanging 10 and ll' 

5. Proper continuous continuous, which has not been 
considered by Gel'fand and Naimark, our 1. 6. 

6. Improper continuous continuous, obtained from 1. 6 
by interchanging lo and 11' our 1. 5. 

However, in SO(3, 1) the improper series eventUally 
reproduce the same matrix elements as the proper 
series. Therefore, there are really only three distinct 
unitary representations in 50(3,1). The new represen­
tation can be obtained from the Gel'fand-Naimark re­
sults by removing the restriction of 10 to integers, 
which is feasible from Theorem 1. ThiS, however, 
changes the representation from being single valued 
to multivalued, which may be the reason why it is 
omitted from the Gel 'fand Naimark list. 

For 50(5,1) our results agree with those of Kuriyan, 
Mukunda, and Sudarshan.s For general k, one notices 
that our branching laws (22) and (23) seem to be differ­
ent, in appearance, from those obtained by Hirai or 
Schwarz. However, this is only in appearance, not in 
substance, because of the interchangeability of the m ij 
and m ik • However, we do think that (24) and (25) are 
a better and more complete description of the branch­
ing law of 50(n, 1}. 
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2. For SO(2k, 1) 

2. 1: PrinCipal series for k > 1: 

m 2k+1 •1 = z + ~ - k/2, 

m 2k+l. k = z* - i + k/2, 

(30) 

(31) 

where z is a complex number, and z* its complex conju­
gate. All others from (15) to (20) remain the same. 

. In the case of 50(2,1) where k = 1, then m 31 = - i + 
te, creal. 

(a) 

2.2: Supplementary series 

m2k+l,1 = - e, creal, 

m 2k+1 • k = k - e - 1, 

0< e < 1, (32) 

(33) 

all other m's integers. (15) to (20) the same as above. 

(b) 

m 2 k+l.1 = i - e, 0< e< i, 
m 2k+1 • k = k - i - e, 

all other m's half integers. (15) to (20) the same. 

(34) 

(35) 

In the case of 50(2, 1}, the discrete series consists of 
two parts: the positive series where 

and the negative series where 

m 21 =-m3 1> -m31 -1, ... ,-co. 

The principal series yields 

m 31 =-i + ie, 

m 21 all integers or all half-integers. 

The supplementary series yields what is called by 
Bargmann the exceptional interval. It also consists of 
two parts. 

m 31 =- e, 0< e< 1, 

m all integers 

or m:~ = i - e, 0 < e < L 
m 2 1 all half-integers. 

The classification of the unitary representations of 
SO(4, 1) has been done by Thomas and Newton.3 How­
ever, they used different variables. Thomas used p, q, 
jl' andj2' Newton used Q, W, and jl,j2' These are re­
lated to our notation as follows: 

Q=-q(q+1)-(P-1)(p+2}=5/2-(q + i}2 - (p + i}2, (36) 

W= - p(p + l)q(q + 1) = - [(q + i)2 - t][(P + i)2 - t], 
(37) 

m S1 = p - 1, m S2 = q, (38) 

(39) 

It can be seen that all the features of the representa­
tions considered by Thomas and Newton are included in 
our classification. 
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IV. INVARIANTS 

With the substitution (2) and (3) it can easily be seen 
that the invariants 12k (R) and 12k(L) commute with all 
the generators of SO(n, 1). Moreover, since the matrix 
elements of SO(n, 1) and SO(n + 1) are the same except 
with the change of (3), it follows that the invariants of 
SO(n, 1) have the same eigenvalues as those of SO(n + 1). 
This can be easily checked in the particular cases of 
SO(2, 1), SO(3, 1), and SO(4, 1) where everything is known. 
Let us just cite one example. 

The fourth order invariant in SO(4, 1) is, according to 
Thomas, 

14 = (LX + MY + NZ)2 - (LU + MV + NW)2 

- (LT + WY - UZ)2 - (MI' + UZ - WX)2 

- (NT + VX - UY)2 

which has eigenvalue p(p + l)q(q + 1) = (m 51 + 1) 
(m 51 + 2)m52 (m52 + 1). This is the same as the eigen­
value of the fourth order Louck invariant in SO(5).13 

V. NORMALIZED RAISING AND LOWERING 
OPERATORS OF SO(n, 1) 

The raising and lowering operators in SO( n, 1) are 
defined in such a way that they increase (decrease) the 
state labels of SO(n) contained in SO(n, 1) by one, all 
the way down to the subgroup SO(2). Thus following 
Wong's notation11 we can define: 

For SO(2k - 1,1) 

1. Lowering operator L 2k ,P' p = 1,2, ..• ,k - 1, 

29 

[R 2k ,P 02k, k] I m 2k,p ) = 0, p = 1,2, ... k - 1. (49) 
m 2k-1 ,p 

For SO(2k, 1) 

1. Lowering operator L 2k+1 ,P' P = 1,2, ... , k, 

[Dp '+1,P"L2k+l ,P] I m 2k+1 ,p ) = 0, p' = 1,2, ... ,k-l, 
m 2k ,p 

(51) 

[Ak, k-l> L 2k+l ,P] I m 2k+1 ,p ) = o. (52) 
m 2k ,p 

2. RaiSing operator R 2k+1 ,P' P = 1,2, ... ,k, 

[J2 0:,2 IX -v R 2k+1, p] = 0 IXPR2 k+l,p , (53) 

p' = 1,2, ... ,k- 1, 

(54) 

[A k,k-1,R2k+l ,p] I m 2k+1 ,p ) = O. (55) 
m 2k ,p 

With the substitution from (2) and (3), these raising 
and lowering operators are the same as those given by 
Pang and Hecht, or by Wong [in Ref. 11, Eqs. (36) to (40)]. 

Moreover, the normalization constants Nqq::_1 and 

N: ::;+1 can be defined in the same way as done by Nagel 
[J2 a, 2 a -1' L 2k , p] = - 0 ap L 2k ,P' 0 < a .;; k - 1, (40) and Moshinsky, Le., for SO(n - 1,1) 

'm ) 
[Dp'+1,P"L2k ,P] I 2k,p =0, p' = 1,2, ••• ,k- 2, 

m 2k- 1 ,p 

(41) 

(42) 

All generators A,B, C,D,E,F, are defined exactly the 
same as in Ref. 11. Equation (3) never enters in the 
definition of the lowering (raising) operators. The basis 
in (41), (42) is a "restricted" baSis, where SO(2k - 1) is 
in its highest weight. 

2. RaisingoperatorsR 2k ,p' p = 1,2, ... ,k-l, 

[J20:,20:-VR2k,P] = 0 apR 2k ,P' 0 < a.;; k - 1, 

[Dp'+1,P' ,R 2k,P] I m 2k
,p )= 0, p'=I, 2, •.. ,k - 2, 

m 2k- 1 ,p 

3. "Zero-step" operator 02k.k' 

[J2a . 20:-1 ,02k,k] = 0, 0< o!.;; k -1, 

[Dp'+l,P" 02k. k] I m 2k
,p )=0, p' = 1,2, ... , k - 2, 

m 2k- l ,p 

) = 0, 
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(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

I 
hl ... h ... hk ) q 1 h 

m = £ m I h ) = (N '" ) - L m I q ), 
Q1 ... q m,-I... n q qm-1 n 

(56) 

(57) 

Accordingly, the normalization constants N q
m_1 and 

q qm' 
Nq::'l in SO(n, 1) have the same values as those in 

SO(n +1). These two statements, however, still remain 
to be proved. 

The first statement is that the raising and lowering 
operators obtained by Pang and Hecht in graphs and by 
Wong in algebraic form with the substitution from (2) 
and (3) do satisfy the definitions (40)-(55). The proof is 
quite simple. Equations (40)-(55) are all commutation 
relations acting on states which are the highest weight 
states in 50(n) contained in SO(n, 1). Since the states in 
SO(n) contained in SO(n, 1) are exactly the same as those 
contained in SO(n + 1), and since J +1 ' occur at most 
once in each term in the expressi;n cif the lowering and 
raising operators, the commutation relations (40)-(55) 
must be satisfied with the substitution from (2) and (3). 

The second statement is that the normalization con­
stants have the same value as given by equations (41)­
(44) of Ref. 11. To prove this we reverse the process 
used in Ref. 11. In Ref. 11 we used the normalization 
constants to obtain the matrix elements of the genera­
tors. We now reverse the procedure and use the matrix 
elements to obtain the normalization constants. The 
fact is there is a definite relationship between the nor-



                                                                                                                                    

30 M. K. F. Wong: Unitary representations of SO(n, 1) 

malization constants and the matrix elements of the 
generators. 

First, for SO(n - 1,1), we use the Wigner-Eckart 
theorem to factor the matrix elements of I n n-l into 
two parts: the reduced matrix element independent of 

In the same way, 

In terms of SO(n - 1,1) we would have, for the left 
side of (58) and (59), ( I - iJ I ). However, in view of 
Theorem 1, this has to be multiplied by another i when 
the matrix element is written in terms of the m's. Thus 
the N's are exactly the same functions of the m's as be­
fore. 

One cannot fail, of course, to notice the Similarity be­
tween this result for SO(n, 1) and the result recently 
obtained by Patera for U(p, 1). However, one has to note 
that the raising and lowering operators are defined 
differently ·in the two cases. The main difference is that 
in U(n, 1) there is a one-to-one correspondence between 
the Gel'fand pattern and weight, while in SO(n, 1) this 
one-to-one correspondence does not exist. 

The normalized raising and lowering operators can 
now be used directly in the discrete series of SO(2k, 1), 
where, in a sense, there exists a highest weight (for a 
negative discrete series) and a lowest weight (for a 
positive discrete series). Thus one can generate all 
basis functions by these operators, in terms of, for ex­
ample, the boson operators. 

For the continuous series of SO(n, 1) it is not possible 
to define either a highest weight or a lowest weight. 
However, one can select an arbitrary state, assume it to 
be normalized, and apply the raising (lowering) opera­
tors to generate the other states. The quantities to be 
calculated are eventually to be referred to the initially 
chosen normalized state. In this sense it is still pos­
sible to apply the boson technique to SO(n, 1). 

CONCLUSION 

We have tried to understand the representations of 
SO(n,1) as a whole. Even though the application of 
SO(n, 1) for n> 4 to physiCS may still take a long time 
to come, it is always gratifying to be able to say we 
know mathematically how to use it in case it is needed. 
We think therefore that the study of SO(n, 1) for general 
n is not a waste of time. As a side product, we have ob­
tained a new representation in SO(3, 1) not considered 
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m n- 2 ,i and the matrix element of a vector operator V 
in SO(n - 1) which is dependent on m n- 2 , i' As far as 
V goes everything is exactly the same in SO(n - 1,1) 
and SO(n). So one has to look at the reduced matrix 
elements only. But in Ref. 11, we have explicitly 
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(58) 

(59) 

by Gel'fand and Naimark. We have also attempted to 
make a complete general classification of all the uni­
tary representations of SO(n, 1). One of the general 
results is that there are no discrete series in SO(2k-1, 
1) where all m's are either integers or half-integers (ex­
cept for the speCial case where one of the l's is 0). 

It is sur~ing to see what a great change a mere 
factor of -./-1 can make. In essence, it changes the 
branching laws in U(p) and SO(p) to the different branch­
ing laws in U(P - 1,1) and SO(p - 1,1). This in turn is 
the reason why the unitary representations of compact 
groups are finite dimensional while the unitary represen­
tations of noncompact groups are infinite-dimensional. 
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Considering the interaction of a quantized electromagnetic field with a prescribed external c -number 
current, we show that, for each current, there is a representation of the field operators in a separable 
Hilbert space and a unitary S operator transforming the free incoming field into the free outgoing 
one. The representation, a generalized product representation, depends on the current so that, in 
general, for two different currents the corresponding representations are unitarily inequivalent. 
Photon states and asymptotic observables are defmed for the case of an infrared divergent current. 

1. INTRODUCTION 

In connection with infrared divergences Kibble l has 
discussed the interaction of a classical current with a 
quantized electromagnetic field. Generalized coherent 
states are used to construct an S matrix which, in 
general, is unitary only in a nonseparable Hilbert space. 

There are essentially two problems one has to deal 
with. The first one occurs when the current, more pre­
cisely, the transverse part of its Fourier transform on 
the mass shell is not square integrable. The corres­
ponding S operator maps coherent state representations 
of the canonical commutation relations (hereafter re­
ferred to as CCR's) onto coherent state representations. 
But restricted to separable subspaces these representa­
tions are unitarily inequivalent. This is the reason why 
Kibble needs a nonseparable Hilbert space. The second 
problem comes in by the possibly infinite Coulomb 
phase due to the selfenergy of the current. Considering 
a wider class of representations of the CCR's we want 
to show that the S operator can be defined as a unitary 
operator in a separable Hilbert space. 

Let J" (x) be the external current which is required to 
be conserved: 

(1. 1) 

We use a "timelike" metric so that the scalar product 
in Minkowski space becomes kx = kOx o - kx. By j(x} 
we denote the divergence-free space part of the current. 
Then, in the radiation gauge Maxwell's equation reads 

(1. 2) 

The field A(x, x O} and its time derivative at a certain 
time, e.g., x O = 0, may be defined in the usual way by 
their Fourier decomposition 

A(x, 0) = (211't 3/ 2 f d/-L(k}(a(k)e ikx + a*(k}e- iltx ), 

(1. 3) 
A(x,O) = (211't 3 / 2 f d/-L(k)ilkl [- a(k}e ikx + a*(k)e- ikx ), 

the integration measure being d/-L(k) = d3k/2Ikl. The 
smeared operators af* = f d/-L(k)a(k)f*(k) and a *f = 
f d/-L(k} a *(k)f(k), where the test functions are required to 
be transverse, i.e.,kf(k) = 0, satisfy the CCR's 

[a*f, a*g) = 0 = [af*, ag*), 

[af*,a*g) = f*g = f d/-L(k)f*(k)g(k). 
(1. 4) 

As a formal solution of (1. 2) we have, with free fields 
Am(x} and Aout(x}, 

A(x) = Ain (x) + f d4YDret (x - y)j( y), (1. 5) 
out adv 
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Dret (x) being the usual retarded or, respectively, 
adv 

advanced zero-mass Green's function. So, the free in 
and out fields are related by 

Aout(x} = Am(x) + f d4yD(x - y)j(y), (1. 6) 

with 

D(x) = i(211')-3 f d/-L(k)(e- ikx - e ikx), (1. 7) 

and k O = Ikl. Thus, 

aout(k) = am (k) + ij(k), (1. 8) 

where j(k) is the Fourier transform of j(x) on the mass 
shell, namely 

j(k) = (211')-3/2 f d4xeHlklxO-kx)j(x). (1. 9) 

From (1. 8) one sees that the S operator must be of the 
form 

S(J} = exp[i(a~j + amj*») exp(ia). (1. 10) 

The phase factor e io can be computed by use of 
Schwinger's variational derivative technique. It comes 
out as! 

a = f d/-L(k)a(k}, 

a(k) = ! f dkOJ" (k)J,,* (k) ( 1 _ 1 .\ 
k O - Ikl k O + IkV 

(1. 11) 

The last integral has to be taken as a principal value 
integral and J(k) is the four-dimensional Fourier trans­
form of the current, J(k) = (211'}-2 f d4xe ikxJ(X). 

Our aim is to give a representation of the CCR's so 
that an operator of the form (1.10) becomes a unitary 
operator in a separable Hilbert space. This means, 
neglecting the phase factor, that a transformation a(k) -') 
a(k) + ij(k} is unitarily implementable whatever the 
current may be. The only restrictions will be that 

j(k) and o(k} are measurable with respect to 
/-L(k) and are finite /-L-almost everywhere. (1. 12) 

We want to emphasize that we are not trying to dia­
gonalize the Hamiltonian at some finite time, or to find 
that representation where this Hamiltonian has a normal­
izable ground state. For linear interactions, similar to 
that one in our model, this problem has been discussed 
by Verbeure and Verboven. 2 

In Sec. 2 we define a class of representations of the 
CCR's which, as we show in Sec. 3, is rich enough to 
contain representations so that the S operator (1.10) 
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becomes unitary. Section 4 deals with an infrared di­
vergent current. Photon states and asymptotic observ­
abIes are defined for this case, and the description of 
scattering experiments is outlined. 

After all we should note that the electromagnetic field 
serves as an example only. It can be replaced by other 
Bose fields with external sources. 

2. GENERALIZED PRODUCT REPRESENTATIONS 
OF THE CCR's 

Instead of representing the CCR's in the form (1. 4), 
one usually passes to the unitary operators 

W(f) = exp(a:nf - ainf*). (2.1) 

(We use now a~, ain because we want to express the S 
operator in terms of these.) By a formal application of 
(1. 4) we obtain the multiplication law 

W(f)W(g) = W(f + g)e i(f.g), (2.2) 

and, as a consequence of it, the CCR's 

W(f)W(g) = W(g)W(f)e 2iC(.g) , (2.3) 

where (f, g) is the real skew-symmetric bilinear form 
given by 

(f, g) = (1/2i) J dj.L(k) [f(k)g*(k) - f*(k)g(k)]. (2.4) 

We call representation of the CCR's a map of the 
test functions f ~ W(f) into unitary operators W(f) satis­
fying (2.2). To guarantee the existence of the field 
operators by Stone's theorem it is required that W(M) is 
weakly continuous in the real parameter A for each fixed 
f of the test function space V. 

According to (1.12) we can find a partition of R3 into 
j.L-measurable subsets Ir with Ir n Ir• = (jJ for r ~ r', 
UTIr = R3 such that 

J dj.L(k)j(k)j*(k) < co, I J dj.L(k)a(k) I < co (2.5) 
I". I". 

for all r. j.L(Ir) need not be finite. Having fixed this 
partition we restrict the test functions in the same way, 
Le., 

v = {f I J dj.L(k)f(k)f*(k) < co for all r}. 
IT 

(2.6) 

The partition of R 3 induces a decomposition of V into­
with respect to the bilinear form (f,~) orthogonal-sub­
spaces Vr , Vr = {flf E V, supp f C IrJ. Let H". be the 
Fock space generated by the au,(k), a:n(k) with test 
functions fT E V".. Because the fr(k) are square integr­
able with respect to dj.L(k), W r(f".) = exp(a~fr - ainf;) 
are unitary operators in H". which of course satisfy 
(2.2). Consider a subspace VO C V defined by 

VO = {flf E V,fr(k) = 0 for almost all r}. (2.7) 

Let H = 181 (H .. , cP ) be the incomplete tensor product3 

of the H r With refe;ence vector 181 CPr' CPT E HT, II CPT II = 1 
T 

for all r. For test functions f E VO,f =~,. Ell f,., we 
define in H a representation of the CCR' s by 

(2.8) 

Let us call this a generalized product representation 
(GPR) of the CCR's. It differs from the often studied 
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direct product and partial-tensor-product representa­
tions4 - 7 because the subspaces V

T 
have infinite dimen­

sion. Irreducibility follows from the irreducibility of 
the Fock representation in each factor. Theorem 2. 1 of 
Ref. 7 is immediately carried over, Le., two GPR with 
reference vectors 181 CPT and 181 1/IT, respectively, are uni­
tarily equivalent ifTand only if ~r(1 - I (CPr' 1/IT>I) < co. 
This means for instance that a GPR (181 cpr) is equivalent 
to the Fock representation if ~r(1 - rl (CPr' 0T> I) < co, 
where Or denotes the Fock vacuum in eachH

T
• If there 

exists a sequence of coherent states Ifr > = Wr(f,.)Or 
such that ~r(1 - I (cp,. Ifr> I) < co then the GPR (181 CPr) is 
equivalent to a (generalized) coherent state repr~senta­
tion. Clearly, each coherent state representation is a 
GPR. However, the coherent states form a total but not 
dense set in each H T and, therefore, there exist vectors 
CPr E Hr such that ~r(1 - I (CPr If,.> I) diverges for each 
sequence of coherent states 1fT), 

The test fUnction space VO is incomplete in the sense 
that there exist sequences of test functions {f(n)} , f(n) E 

VO such that W(f(n») converges strongly to a unitary 
W(~(n)}) and there is nof E VO with W(f) = W({f(n)}). It 
has been shown8 . 9 that the representation itself, at first 
defined for test function f E VO, determines the com­
pletion of VO. For product representations character­
ized by 181 CPT the admissible test functions are just those 

r 
f = ~~ 1 Ell fT for which 181 W,. (fT) CPT is weakly equivalentto ,. 
181 CPT.9.lO If one wants the completion to be a linear 
;ector space one has to impose on f a slightly more 
restrictive condition. The cQrresponding operators are 
of the form W(f) = 181 W T(fr)e,uT with certain real 
numbers Qr. We slfall show in the next section that in a 
suitably chosen GPR the S operator becomes one of these 
operators. 

3. THE REPRESENTATION FOR A GIVEN CURRENT 

Let jr(k) = j(klxr(k) and ar = J dj.L(k)a(klxr(k) where 
xr(k) is the characteristic function of I r • We define the 
truncated current and phase by j(n)(k) = ~rj~)(k) and 
a(n) = ~ra(n): 

{ 
jr(k), 

j~)(k) = 
0, 

r.,;, n}, 
r>n 

a}n) = { 
ar' 

0, 

r.,;, n }. 

r>n 

In the GPR defined in (2.5)-(2.8) the corresponding 
S operator becomes 

(3.1) 

Certainly, S(J(n») is unitary in each incomplete tensor 
product space because W,.(ij~») = lr for almost all r. 

Lemma 3.1: (Araki, Woods): There exists a sub­
sequence ns' S = 1,2, . ", ns > ns- l for all S (where no = 
0) such that lims~oO eio(n s ) exists. 

Proof: Consider the sequence ar,r = 1,2,···. 
There exist integers m k and a sequence nk as above 
such that9 

nk 

6 (5r l ";'1f. 
r Ollk-l+1 

Let 
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Then 
io(ns) i ","s 0 i ",5 ( 

e = e ""'1'=1 'I' = e ""k=1 k 

which converges because 6:= 11 € kl does so. 

Let us therefore assume that the original partition 1'1' 
has been chosen in such a way that limn .... coeio(n) exists, 

In our model e to is an over-all phase factor which has 
no physical meaning. It could have been omitted if we 
only require the S matrix to transform ajn (k) into aout (k), 
Anyhow, the preceding Lemma shows how one can get 
rid of such an infinite phase. 

Lemma 3.2: Let Ur,r = 1,2,"', be unitary 
operators in Hilbert spaces Hr. Let Urw) = Ur for r s 
n, Urw) = 1'1' for r > n and define Uw) = ~ ~). If 

611- (¢r,Ur¢r)1 < co, ¢ .. E H .. , 11¢ .. 1i = 1, .. (3.2) 
then 

(i) U = ® U .. is unitary in H = ® (H r , ¢ .. ). 
'I' .. 

(ii) U = s-lim u&z). 
.. --co 

Proof: (i) The product vectors 1/1 ::= ® 1/1 .. with 1/1'1' = .. 
CP .. for almost all r form a total set in H. Equation (3.2) 
implies I;r 11 - (CPr' Uy1/l .. ) I < ctJ, thus3 U1/I = 181 U .. 1/Iy E 

H. Hence U is an operator in H and it is unit:ry because 
(3.2) implies 6'1' 11 - (cp .. , U: CP .. ) I < co, 
(ii) It suffices [see (i)] to show that 
limn_co II (U(n) - U) 0 CPr II = O. 

'I' 

But 

lI(uw) - U) 181 ¢ 112 = 2(1 - Re n (u(n)cp U""'» r r r r r' 1""+"1" 

= 2(1 - Re n (CPr, UyCP .. » -> 0, 
r>n n 

fQr (3.2) implies that n .. (CPr, U .. CPr) converges. 

In our case H .. is the Fock space with test functions 
having support in I .. and Ur = W r(ijr)' It depends on the 
spectrum of the Wr whether one can find a sequence of 
vectors CPr E Hr satisfying (3.2), Let WF(f) be the Fock 
representation of the CCR's with test functions f E VF • 

It is knownll that V can be taken as a Hilbert space 
with inner product &, tV = J d/.L(k)f*(k)g (k). The bilinear 
form (2.4) becomes (f, g) = - Im(f, g). For any g E VF , 

g 1: 0, let A Fg denote the self-adjoint generator of the one 
parameter unitary group 

Lemma 3:3: The spectrum of AFg is purely con­
tinuous and covers the whole real line. 

Proof: This is clear because the Fock representa­
tion when restricted to one degree of freedom becomes 
unitarily equivalent to a direct sum of SchrOdinger re­
presentations. The representation space may be written 
as H = Hg 181 H',Hg = L2(R1), such that WF(g) becomes 
WF(g) = ei'Yx 181 l' with a real y. 

Lemma 3.4: There exists a sequence of vectors 
CPr E Hy, (H y Fock spaces) IICPr ll = 1 for all r, such that 

6/1 - (cpy, Wy(ijr)CPY) I < ctJ. (3.3) 
'I' 

Proof: If i .. = O. then (cpy, Wy(ijy)CPr> = 1. For iT :f 0 
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we write Wy(ijy) = J e 0-. dEr) where E~") is the resolu­
tion of the identity for the infinitesimal generator of 
W .. (ijT)' Let E .. > 0 be a sequence of positive real num­
bers so that 6 .. Ey < ctJ. According to Lemma 3.2 
(K(") - E5;»H .. = Hy ( is a nontrivial subspace of Hr' 

""'7 r • r 
Take a unit vector CPy E H .. ,E .. ' Then 

So, we have according to Lemma 3. 1 

s-limS(J("~ = s-limeio(n) ® Wy(ij~» 
n~® n~~ r 
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exists and is unitary in H = ® .. (Hr , cPy). Let us summar­
ize these results as 

Theorem 3.1: For a given current there exists an 
irreducible representation of the CCRts in a separable 
Hilbert space so that an S operator of the form (1.10) 
can be given a meaning as a unitary operator in this 
space • 

It is clear from this construction that different 
currents lead to different and, in general, unitarily in­
equivalent representations. Even for one current the 
construction is not unique. It is not hard to find a se­
quence of vectors X .. E H,., also fulfilling the conditions 
of Lemma 3.3 and such that 6 .. (1 - I (cpr' x .. > I) does not 
converge. This means that the representations in H 1 = 
0 r (H .. , CP .. ) and H2 = ® .. (H .. , Xr) are unitarily inequivalent. 
However, as we want to show now, any two such repre­
sentations are physically equivalent in the sense that 
they lead to the same predictions for photon scattering. 

4. PHOTON STATES AND ASYMPTOTIC OBSERVABLES 

The above formalism was mainly developed in order 
to investigate infrared problems which arise if 
J d/.L(k)j*(k)j(k) is divergent at k = 0 (we assume this to 
be the only pOint of divergence). The subsets Ir , r = 1, 
2, ••• , which form a partition of k space might be chosen 
as spherical shells, i.e., 

(4.1) 

where the radius d .. goes to zero and I1 may be given by 
11 = {kll ~ Ikl < co}. 

In order to define physically meaningful asymptotic 
observables and corresponding physical photon states, 
we take into account that for any given scattering experi­
ment (preparation of an incoming state and detection of 
outgoing photons) there is an energy threshold A below 
which single photons cannot be detected. Accordingly, we 
define the asymptotic observables corresponding to such 
an experiment to be functions of a:x(k) and aex(k) with 
Ikl ;;. A, where Hex" means "in" or "out." This threshold 
distinguishes "hard" (= detectable) photons, with Ikl ;;. A, 
from the remaining field excitations which might be 
called "soft photons" (although the latter term is some­
what misleading since, e.g., there is no total number 
operator for "soft photons" in our state space H). Of 
course, the energy threshold A, and thus the distinction 
between "hard" and "soft" photons, depends on the ex­
periment considered. We will show, however, that our 
formalism is applicable for any A > 0, and is thus able 
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to describe scattering experiments with any finite 
energy resolution. 

Referring to the partition 1,,. (4.1) there is for every 
A > 0 a finite r(A) such that 

dr(lI) .. A < dr (A)-1. 

Consider the space 

r(lI) 

H'= ® H 
r~1 r 

(4.2) 

which is clearly the Fock space of photons with an energy 
Ikl ~ dr(A). We may factorize H' asH' = H 1 (A) ® H" , 
H l.(A) being the Fock space of photons with momenta 
Ikl ~ A, so that the total Hilbert space 

H = ~ (Hr , CP.,J = H' 181 {r>~(A) (Hr' CPr)} 

= H1 (A) ® H" ® {r>~(A)(Hr' CPr)} 

may be written as 

(4.3) 

Certainly, the scattering operator admits a similar 
decomposition, Le., 

where up to a finite phase factor S1 (A) is given by 

S1(A) = exp(iJIk''''Adj.t{k){a~{k)j(k) + a 1n(k)j*(k)}) 

(4.4) 

(4.5) 

which is unitary in H 1 (A) and S2 (A) acts unitarily on 
H 2(A). Photon states are described by special unit 
vectors <I> E H, <I> = <1>1 ® <1>2 with <1>; E H; (A) and 11<1>;11 = 
1 for i = 1;2. According to the foregoing considerations 
the asymptotic observables are of the form A = A1 ® 12 
so that the second factor <1>2 of <I> cannot be determined 
by preparing or measuring processes. Let <1>1 E H 1 (A) 
be an initially pr'epared state. If we ask for the prob­
ability of finding the state >lt1 € HI (A) after scattering, 
we have to compute 

(<I>ls(p(>lt 1 ) ® 12) S-1I<1» 

= (<1>11 S1 (A)P(>lt1)Si1(A) 1 <1>1)(<1>21 S2(A)S21(A) 1 <1>2) 

= 1 (<1>11 S1 (A)>lt 1 ) 12, (4.6) 

where P(1{I1) is the projection on to the one-dimensional 
subspace of H 1 (A) generated by >It 1. The result (4.6) 
obViously does not depend on the special representation 
of the CCR's constructed in Sec. 3 because only the Fock 
states <I> l' -+ 1 enter. It is also independent of the "soft 
photon" part <1>2 of the initial state <1>, which was not fixed 
anyway by the preparation of <I> and must thus be con­
sidered as completely arbitrary. To discuss an example 
we consider the n-particle bremsstrahlung, i.e., we put 
<I> 1 = lOin) and ask for the probability W n to find n 
photons after scattering. We have, therefore, to replace 
P(>lt 1 ) of Eq. (4. 6) by the projection Pn onto the n-particle 
subspace of H 1 (A). 

Writing Pn as 
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with a (in the region Ikl ;:,. A) complete system of ortho­
normal vectors fl(k), one obtains after some elementary 
calculations 

Wn = ~! (ilk'''' A dj.t(k)j*(k)j(kf exp (- JIk''''A dj.t(k)j*(k)j(k»). 

(4.7) 
This is just the expected Poissonian distribution 

because the mean number of detectable photons is given 
by 

n = (0 in 1 S1(A) J
Ik

,,,, A dj.t(k)a~(k)ain(k)Si1(A)I0in) 

= J1If.'~A dJ.L(k)j*(k)j(k). (4.8) 

So, what we have arrived at is a representation of the 
CCR's in a separable Hilbert space and a scattering 
operator S acting unitarily on this space. Neither S nor 
the representation depend on the experimental situation 
characterized by a finite resolution limit A. Actually 
this parameter partly determines the asymptotic obser­
vables and the form of those vectors that correspond to 
phySical states. Equation (4.6) shows that the results 
are the same as obtained by formal computation in Fock 
space. 

We want to conclude with a remark concerning pertur­
bation series. From Eq. (4. 7) one sees that wn ' especially 
w 1 = n(A)e-nlA> tends to zero when A approaches zero. 
However, expanding the S operator (4.5) as 

Sr(A) = 1 + il dj.t(k){am* (k)j(k) + a 1n (k)j*(k)} + ... , 
Ik'" A 

the first order term for w1 is given by 

W£l) = r dj.t(k)j*(k)j(k) = ii (A) 
J'k'" A. 

which diverges with A gOing to zero. Thus our model, al­
though mathematically consistent as well as physically 
reasonable if solved rigorously, is still infrared divergent 
in perturbation theory. Discussing infrared problems of 
quantum electrodynamics one should take into consider­
ation that there might be divergences which exclusively 
originate in perturbation expansion. 
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Definition, existence and properties of the equilibrium states, existence and uniqueness of the 
approach to the equilibrium states, the Onsager reciprocity relations, and existence of hydrodynamic 
stage in the approach to the equilibrium states are the problems which are discussed in this paper 
for dynamics defined by the family of kinetic equations of the Enskog-Vlasov type. A modification 
of the Chapman-Enskog method for quantitative calculations involving the kinetic equations 
considered is suggested. 

I. INTRODUCTION 

It is well understood that as the time evolution of 
dilute gases with short-range intermolecular forces 
proceeds the kinetic stage is reached, where the state 
of the gases at time t is adequately described by one 
function f(r, v, t), where r and v are position and velo­
city vectors, respectively, and the time development of 
f is governed by the kinetic equation 

af(r, v, t) _ Rf( t) - r,v" at 
(1) 

where R == v(a /a r) + R B, RBis the Boltzmann collision 
operator. The subsequent time evolution of dilute gases 
can be deduced from Eq. (1). The particularly interest­
ing problems are the following: (a) study of time inde­
pendent solutions of Eq. (1) which can be identified with 
the thermodynamic equilibrium states, ({3) problem of 
the existence and properties of the time approach to the 
equilibrium states studied in (a), (oy) problem of exis­
tence of hydrodynamic stage in the approach to the 
equilibrium states. Discussions of these problems on 
the basis of the Boltzmann equation have proved to be 
a source of inspiration for discussions of these prob­
lems and other dynamical models including Hamiltonian 
dynamics. 

Our purpose is to study problems (0'), ({3), (oy) on the 
base of dynamiCS defined by the family of kinetic equa­
tions of the type (1) where R is an element of the class 
(R of kinetic operators defined in Sec.n [Eq. (2)]. The 
operator - v(a /a r) + RBis now only one element of (R. 

An essentially new feature, with respect to the discus­
sion based on the Boltzmann equation only, appears in 
the problem (0') (Sec. ill). In contrast to a discussion 
based on the Boltzmann equation only, there arise here 
many possible equilibrium states which may be physi­
cally interpreted as indicating phase transitions (a re­
cent review of the literature where this idea was laid 
down is given in Ref. 1). The Single-phase, thermodyna­
mically stable equilibrium states are defined and a 
Hilbert space, having a direct thermodynamical meaning, 
is attached to each of them. The time dependence 
governed by the corresponding linearized kinetic opera­
tors is studied in these spaces (Sec. IV). The main re­
sults are formulated in three theorems. The first 
theorem deals with existence and uniqueness problem, 
in the second theorem a symmetry relation for Green I s 
function (an extension of Onsager's reciprocity relation 
in nonequilibrium thermodynamics) is proved; the third 
theorem (related to the Chapman-Enskog method and 
existence of hydrodynamic stage) discusses the spec­
trum of the Fourier transform of the linearized kinetic 
operators. If our discussion is reduced to the Boltz­
mann equation only, then the single-phase, thermodyna­
mically stable equilibrium states are all possible equi­
librium states; the Hilbert space attached to them is the 
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£2 space with the Maxwell distripution in velocities as 
a weight function in the inner product (introduced by 
Grad3 ) and the three theorems are known.4 ,5 

II. KINETIC EOUATIONS OF THE ENSKOG-VLASOV 
TYPE 

The class (R of operator R in Eq. (1) consists of linear 
combinations of four operators R;, i == 1,2,3,4, defined 
below with real coefficients c; ? 0 for i == 1, 3, 4 and 
c2 > 0, i.e. (R 3 R{c.) == c1R1 + c2 R 2 + c3R3 + c4 R 4 • 

The basic operators'R i are defined as follows: (the 
summation convention a· b == a", b '" == a1 b 1 + a2 b 2 + 
c 3 b3 , where a, b are three-dimensional vectors, is used) 

of 
Rlf == - v -, '" a r", 

R2f = 1){r, t}RBf == 1){r,t}a2 
(2) 

x J d 2 « 1.( K »0 d 3v 1 (g",K",)(f'(r)fi.(r)-f(r)f1(r», 
g", 0. 

where 1)[r,t] == 1){n(r,t)} is a functional of n(r,t) == 
f d3 v f (r, v, t) (its physical meaning is explained below), 
a is the diameter of the hard-core repulsive potential 
between two particles in the system conSidered, g == v 1 -

v, Vi == V + K(ga Ka ), vi == v 1- K(gaKa)' K is a unit vector 
directed from the center of the sphere with velocity v 
to the center of the sphere with v', the standard abbre­
viation f{(r) == ff.r, v1' t) .,. etc. is used, 

(2') 

R f - 1 of(r) f d3 f d 3 a V( 'r - r 1 ') f ( ) 
4 - - -- r 1 v1 1 r 1 , 

m OVa ar", 

where m is the mass of one particle, V(' r - r 1 ') is the 
long-range attractive part of the two particle potential 
function. The functions 1) and V are arbitrary except we 
impose the mathematical requirement that all expres­
sions containing these functions have a sense; some 
further requirements will come later in the text (Lemma 
1). 

Let us recall the physical meaning of some of the 
kinetic equations (1) with R E (R. The operator R1 is 
the Knudsen operator. R1f gives the rate of change of 
f due to the fact that the particles have a finite velocity, 
and consequently, change their position with time. The 
operator R2 is the Boltzmann collision operator and 
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R2f gives the rate of change of f due to the fact that 
the particles change their velocities with time because 
of the hard-core potential between them (binary colli­
sions). The operator R3 is the part of the Enskog 
operator proportional to a3 • R3f gives a correction to 
R2f due to the fact that the hard-core potential has a 
finite range a. The function 1/ occurs in order to include 
apprOximately the two particle space correlations 
(1/ == 1 if there is no such correlation). The operator R 4 
is the Vlasov operator. It represents a mean field type 
influence of the long-range potential between particles 
on the rate of change of f. 

Our class <R of operators in Eq. (1) does not include 
all kinetic operators known now, but it hopefully in­
cludes the physically most important ones. The physi­
cal Significance of various kinetic operators is mea­
sured by comparing some qualitative and quantitative 
properties of solutions to Eq. (1) with results of obser­
vation. In order to know which kinetic operator in a 
given situation is the physically significant one, it is 
first necessary to know how to get the qualitative and 
quantitative properties of solutions of the kinetic equa­
tions and which of these properties are related to par­
ticular observations. An example of a physical system 
whose kinetic stage seems to be reasonably described 
by Eq. (1) with R E <R is a van der Walls gaS.2,1 

In order to eliminate problems related to boundary 
conditions, we shall assume the periodiC boundary con­
ditions on the boundary of a finite volume n ::: {- a :s 
r i :S a, i::: 1,2, 3}, where a is a sufficiently large posi­
tive number. Equation (1) becomes mathematically 
meaningful if a space of functions serving as the domain 
of R E <R (denoted by ~) is specified by giving its, topo­
logical structure. In principle, the structure of ~ to­
gether with the kinetic equation should come as a result 
of its derivation from Hamiltonian dynamics. We want 
to start our study of the approach to equilibrium with 
the kinetic equation (1), therefore a structure of ~ must 
be discussed inside kinetic theory. We shall show that 
the established correspondence between the study of 
the time-independent solutions to Eq. (1) which are, 
moreover, invariant with respect to the transformation 
v -7 - v (called the equilibrium states) and thermodyna­
mics allows us to make a physically reasonable classi­
fication of equilibrium states leaving the problem of 
the structure of ~ undeCided. This discussion of equili­
brium states is also used to propose some local proper­
ties of :D at the equilibrium states needed for our study 
of the approach to the equilibrium states. 

III. THE EQUILIBRIUM STATES 

We shall define the equilibrium states as the time 
independent solutions of Eq. (1) that are invariant with 
respect to the transformation v -7 - v denoted hereafter 
as Tv' It is easy to see that all R E <R with c2 ::: 0 
change Sign if the transformation Tv is applied, the 
operators R E <R with c1 ::: c3 ::: c4 ::: 0 remain un­
changed. The following notation is used: 

Evidently, we have <R ::: <R (+) + <R (-). Elements of <R (+) 

are denoted by R(+), elements of <R(-) are denoted by R(-). 

A direct consequence of the definition of the equilibrium 
states are the following two equations determining them: 

R(+)f ::: 0, 

R(-)f::: O. 
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(3) 

(4) 

Let us introduce a set 3' ::: {j E ~;R(+)f = 0, Tvf =f}. 
Elements of 3' are denoted by f e • Since Eq. (3) is 
equivalent to R Bf::: 0 (we assume that 1/ '" 0), the Boltz­
mann classical result gives 

fe ::: n (r) exp[i3(r) v2 ], (5') 

where n(r) and (3(r) are arbitrary functions of r such 
that fe E :D. Inserting fe given by Eq. (5') into Eq. (4), 
an equation for n (r) and (3(r) is obtained. Because n (r) 
and (3(r) are independent of v, it is easy to see that (3(r) 
must be a constant independent of r. We shall use here­
after 

(5) 

where Me(v)::: (m/211)3t'2(3312 exp(- im(3v2 )(J d3vfe = n(r» 
and (3 is a positive real number. If we now insert fe 
given by Eq. (5) into Eq. (4), an equation for n(r) is 
obtained: 

where e ::: i 11173 , 

a 
Me(v)[c1 Inn + c4 (3G1.r n 

ara 

+ c3e(1/(n)n + H(n))~:;: 0, 

G1,rn::: ~jd3rV(!r-r1!)n(r1)' 

H(n) J 1/(n)dn. 

(6) 

(7) 

Equation (6) can be written also in another form as the 
condition for an extremum of a functional 

o In:=: eq 
----=-----'- = 0, (6' ) 

on 

where 

In:=:eq(n(r); O!eq,(3,a{c}) 

= - clIo d 3rn(r) lnn(r) - c3e 10 d3 rn(r)H(n) 

-C4 f I 1. d3 rd3 r'V(!r-r'!)n(r)n(r') 2 !.xu 

+ c10!eqlo d 3rn(r), (8) 

O!eq is an arbitrary constant. 

The function n(r) satisfying Eq. (6) will be denoted by 
n .. q (r), the function feq (r, v) = n eq(r) M a (v) is called an 
equilibrium state. The following notation is introduced: 
3' e ::: {j E :D; Tvf = f, R (+) f = 0, R (-) f::: O}. It is 
eVi'tient that 3' eq C 3'. The equilibrium states feq are 
elements of 3' eq' A finer classification of states inside 
3' eq will be needed. 

The functions f .. q E 3' .. q satisfying, moreover, 

I10xo d 3 rd 3r' 0
2 

In :=:e q X(r) X(r') < 0, 
on(r) on(r') 

(9) 

where X(r) is an arbitrary function such that the integ­
ral in (9) exists,will be denoted by fe'l.s(r,v) :::neqs(r) 
Me (v) and called the thermodynamically stable equili­
brium states. We define 3'eQs :::{jE 3'eq;f satisfies 
Eq. (9)}. If n e q s (r) is a constant independent of r 

(10) 
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then fo(r, v) ::::: noMs (v) are called single-phase thermo­
dynamically stable equilibrium states. All such fo form 
a set 5'0 c 5'" s C 5'"q C 5' C!D. Since InZ"q depends 
on Il.. ,13, a, {i} and on the two free functions 1J, V in 
the de~inition of <R, the conditions defining the classifica­
tion 5'0 C 5' e q s C 5'" q C 5' C !D represent relations 
among these quantities which are in general different 
for different !D. The relationship between equilibrium 
states in the sense of Eqs. (3)-(10) and equilibrium 
states studied in thermodynamics is based on the follow­
ing interpretation of InZeq: 

InZ eq (n"q(r)i ll"q,t3,a,{c}) = InZ tk (ll eq ,{3,O) 

= - !3U[T, Il, 0], (11) 

where U is the grand canonical thermodynamic poten­
tials (dU = - SdT - Pd 0 -Nd Il), T = (k Bm-l , kB is 
the Boltzmann constant, Il = Ileq /(3. 

IV. APPROACH TO THE SINGLE-PHASE THERMO 
DYNAMICAllY STABLE EQUILIBRIUM STATES 

Only local dynamical properties of single phase 
thermodynamically stable equilibrium states foE 5'0 
will be studied. An appropriate Hilbert space Xa = 
{cp(r, v) are Lebesgue measurable, (CPl cp) a; < co} which 
will be specified later is attached to each fo E 5'0' 
The Hilbert space X a; is of course in general different 
for different fo,i.e.,it depends on ll eq ,t3,n,{c},1J(n), 
VCr). The time development of cP is assumed to be 
governed by a linear part of R denoted by P. In other 
words,Pcp is obtained as the linearization of Rf around 
f o' The linear operator P depends on ll eq ,I3,a,{c}, 
1J(n}, VCr). The class of all operators Pcorresponding 
to all R E <R and all fo E 5'0 is denoted as <Ro' 

Simple calculations give a general form of P E <R 0 in 
the linear equation 

ocp = pm (12) ot .,.., 

pcp = clDlCP + C21Jc!lB./CP + c3[e1JO(DlG2 - G~l)CP 

+ 1JleDlG2 +1Jo(a3/4)D2]cp + c4t3DlGlG2CP, (13) 

where Gl cP = Gl,r Iv cP = 10 d3 r l V( 11"- rl I) cp(rl , v), 
Iv is the identity transformation with respect to the de­
pendence of cp on v, 

a 
Dlcp=-va; -::;-cp, 

vra; 

_0_ (cp(r, vj) 
ora 

- cp(r, v1», 
R B, / is the linearized Boltzmann operator, 3 R B / = 
K cp - lIe v) cp, the explicit form of the integral operator 
K and the function II(V) are given for example in Ref. 3, 
1Jo = 1J(no), 1J1 = n o(151J(n)/15n)1l • We shall assume 
that 0 < 1Jo < co, 1Jl < co. The dgmain of P E <R 0 is 
denoted as !Do. a = {cp E X ex; Pcp EX"" cp is absolutely 
continuous on r E n and - co :s Vi :s + co, i::= 1,2,3, 
and cp(- a,r2,r3, v) = cp(a,r2,r3, v), cp(rl ,- a,r3, v) = 
cp(r1,r2,- a, v) = cp(rV r 2,a, v)}. The finite volume n 
and the periodic boundary conditions in the definition of 
!Do, a; can be replaced by the whole coordinate space a3 

together with the condition that the cp tends to zero suf­
ficiently rapidly as I r I -7 co without effecting the dis-
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Lemma 1: Let Xa; = Xl = £2 [i.e., 1/1, cp) '" = (1/1, CP)l::::: 
1., d 3 r 1 d3v1J-(r, v) cp(r, v)]. Then 

(a) G1 is a bounded self-adjoint operator, i.e., G1 ::::: GIl 
(t ~ means the adjoint with respect to the inner product 
(, h; 
(b) G2 is a bounded operator and f oG2 = (fOG 2)tl; 

(c) the integral operator K in R B / is a bounded and 
compact operatori moreover, foK'= (fOK)tI, II(V) ..... v 
for v -7 co and (CP'!ORB ,/ CP)1 :s 0, where the equality 
holds only for cp = 1, v, v2; 

(d) the operator Dl is a closed andDl = - (D2)t 1 

(domains of Dl and Di l are identical); 

(e) similarly D2 is a closed operator and foD2 = 
- (fOD2)tl i 

(f) 1 d3r 1 d 3v foPcp = 0 for all cp E !DO,l' 

(g) 1 d 3vfo C9c cp::::: 0, where <Pc = {p E <Ro;c1 = a}; 
1 I 

(h) !D 0,1 is dense in Xl' 

Proof: (a), (b), (d) and (e) follow from the definitions 
of the operators Gl • G2 (Eqs. (7), (12)] and D1 and D2 
[Eq. (12)] and from the standard considerations (e. g., 
Ref. 7). The boundedness of Gl represents a limitation 
(physically very natural) on functions V( I r - r 1 I) we 
shall consider. (c) is a summary of the well-known re­
sults about the linear Boltzmann operator, 3 (f) is a 
consequence of the property 1 d3r 1 d3v Rf = 0 which 
can be obtained easily by using the definitions of R E <R 
[Eq. (12)]; (g) is a consequence of the property 1 d3VRc 
f = 0 where R c = {R E <R; c1 = o} which can be again 1 

1 
easily obtained by using the definitions R E <R (Eq. (2». 
(h) follows from standard considerations (e.g.,ReL 7). 

We shall now find an appropriate Xa; denoted as X 2 • 

A natural extension of the function In:E:eq(n(r); 0eq,{3, 
a, {c}) which has been introduced in Eq. (8) is the 
function InZ(f(r, v, t); 0,13, a, {c}) defined as follows: 

In :=:(fi 0, (3, a, {c}) 

= - cl 1a d 3r 1 d 3vf(r, v, t) lnf(r, v, t) 
- c3e fa d3r 1 d3v fer, v, t)H(n) 

+ c 10 10 d3v 1 d 3vf(r, v, t) 

- cl(3 1 d 3r 1 d3v! mv2 fer, v, t) 
- c4~t3 110xa d3rd3r l 1 r d 3vd3v1 V( I r - rll) 

x fer, v, t)f(rl , VI t). (14) 

These are the properties of In Z : 

In:=: (fe;Il,(3,a,{c}) = In:=:eq(n(r);ll eq ,t3,a,{c}), 

where 0 e q = 0 - ~ In(t3[ m /211' », 
15 InZ eq = olnZ I (15) 

Bn Bf Ie 

The functional Taylor expansion of InZ gives 

In Z (f i 0 , (3, a, { c}) = In Z e q (n 0; Il, 13, a, { c} ) 
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+ Jo d 3r J d 3v li InE fo(v) qJ(r, v, t) 
lif(r,v,t) -'0 

+ ~ J J d 3rd3r l J J d 3vd3 v l liZ InE I 
QXll lif(r, v, t) lif(rl,vl> t) 10 

X fo(v)fo(vl ), qJ(r, v, t) qJ(rl , vI' t), (16) 

where the terms ~ qJ k ,k ~ 3 were neglected (we are 
discussing the linearized kinetic equation only). The 
second term on the rhs of Eq. (16) equals to zero. It 
follows from the definition of the equilibrium states in 
Eq. (6') and from Eq. (15). The third term on the rhs 
of Eq. (16) can be written as 

-
where A = f oA, 

A = - C1 - c4f3GlGZ - c3e(1JlGZ + 21JoGz). 

So that Eq. (9) defining the thermodynamic stability 
can now be written as 

(17) 

(9') 

where A .q = c 1 +c4{:lG1,r - c 3e(1J1 + 21)0)' Inserting 
X(r) = J f oqJd3v, one obtains 

(qJ,AqJh ~ 0, (18) 

where equality holds only for qJ = O. Thus if a,{:l,a,{c}, 
n, v are such that f 0 is a single phase thermodynami­
cally stable equilibrium state then the linear operator 
A is a bounded, self-adjoint and positive operator de­
fined everywhere on £2' It follows from the theory of 
square root,S of linear operators8 ,9 that there exists 
a linear operator A 1/2 which is bounded, self-adjoint 
and defined everywhere on £2 such that (A 1/Z)2 = A. 
Hence, 

(IV ,AqJ)l = (IV, (A1/2)2 qJh = (A 1/2lV ,A l /2 qJh 
def. 

= (lVl/2 ,Al /2 qJh = (lVl/2' qJl/Z)l = (IV, qJ)2· (19) 

It follows from Eqs. (16) and (19) that 

(16') 

and by using Eq. (12) we have 

a InE: -- = - (qJ,APqJ)l = - (qJ,PqJ)2 • 
at 

(20) 

It is also clear from (19) that the following are equiva­
lent: The study of AP in Je l , the study of P in Je 2 and the 
study of P 1/ 2 = AI/2P(A1/2)-1 in (Je 1h / 2' where (Je I )1/2 
indicates that the domain consists of the functions 
qJI/2 = A 1/2 qJ. In accordance with the usual physical 
terminology, we can call the operator Al/2 the renor­
malization operator. 

Lemma 2: (a) The operator AP is densely defined 
and closed in Je l ; 

(b) the domains of AP(,±) = (AP(+)Tl are identical; 

(c) AP(+) = (AP(+»T
" 

(qJ,AP(+)CP)l:'S 0, 

where the equality holds only for qJ = 1, v, v 2 ; 

J, Math. Phys., Vol. 15, No.1, January 1974 

(21) 

38 

(d) AP(-) = - (AP(-Yl, 

(qJ,AP (-) qJ)1 = 0; 
(22) 

(e) (AP)"l = Tv(AP). (23) 

Proof: (a) and (b) follows from Lemma 1 and Eq. 
(17). In order to prove (c) and (d), we shall write 
(IV ,APqJ)l explicitly by using Eqs. (12) and (17), 

(lV,APqJ)l = (fo[c i + c 4{:lG 1G Z + c 3e('TI1G 2 + 2'T1oGz)]IV, 

{c1D 1 + C21Jo R B,1 + c3[e1Jo(D1G2 - G 2D I ) 

+ 1J1eDIGZ + 'TIo(a3/4)D2 ] + c 4{:lD 1G I G 2}qJh. (24) 

The only terms giving a nonzero contribution are those 
proportional to C~,c1c2,cIC4,c1c3. All others give 
zero as a consequence of the Lemma 1 (g). After some 
calculations and by using explicit definition of P and 
the Lemma 1, one obtains 

(IV,APqJh = (lV,{c~foD1 + cIC2fo'TIoRB,l 

+ c1c4f3[JoDlG1G2 - UoD1G1G2)"tl] 

+ c 1c 3'T11[JoD 1G 2 - U o D 1G2 )t,] 

+ c1c3e'TIO[JoD1G2 - UoD I G 2 )t,] 

+ C1C31JO(a3/4)foD2}qJh; (25) 

(c) and (d) follow now easily from (25). (e) is a direct 
consequence of the definition of P (+) and P (-) and (c), 
(d) of this lemma. 

The next three sections discuss mathematical and 
physical consequence of the Lemma 2. 

V. EXISTENCE AND UNIQUENESS OF THE APPROACH 
TO THE SINGLE-PHASE THERMODYNAMICALLY 
STABLE EQUILIBRIUM STATES 

Theorem 1: There exists one and only one function 
qJ t defined for all t ~ to (to is fixed) with properties: 

(1) qJ t is continuously differentiable with respect to t 
and qJ t E :Do, 2 , 

(2) Eq. (12) is satisfied and qJ t = U(t, to) qJ t where 
U(t, to) is a contraction semigroup of classoCO, 

(3) the strong limit of qJ t for t -) to equals to qJ t equals 
to qJ t • 0 

o 
This theorem is an immediate consequence of Lemma 

2 and the Hille-Yoshida theory of semigroups.9,10 
The fact that the Hille-Yoshida theory is a natural tool 
in kinetic theory has been recognized in transport 
theoryll and in the theory of the linearized Boltzmann 
equation. 8 

VI. ONSAGER RECIPROCITY RELATIONS IN 
KINETIC THEORY 

Interesting physical consequences of results in Sec. IV 
can be derived from the integral representation of the 
operator U(t, to). Let 

qJ(r,v,t) = U(t,to)qJ(r,v,t o) 

= Jo d3r o J d3vo G(r,v,t;ro,vo,to) 

x qJ(ro,vo,to) (26) 

be the integral representation of the operator U(t, to)' 
The function G in Eq. (26) is called a kernel of the inte­
gral representation or also Green's function of Eq. (12). 
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Since the operator P defining U(t, to) is independent of 
time, we have 

It follows from Eqs. (19) and (19') that 

a InZ I 
at to 

f r d3 d3 ffd3 d3 ___ 02_1_n_Z __ 1 = Jnxn r r l Vi VI 
6f(r,v,t)of(rl'vl ,t) 10 

x fo(v)fo(vl ) aqJ(r, v, t) I qJ(rl , VI' to)' (28) 
at to 

or, introducing a shorter notation, 

f J d3rd3r l f f d3vd3v I A(r, v;r l , VI) 
nxo 

x aqJ(r,v,t) I qJ(rl,vI,tO)' (28') 
at to 

where 

A(r, v; r l , VI) = A(rl , VI; r, v) = fo(v)fo(vl ) 

X 02 lnZ/6f(r,v,t)6f(rl ,vl>t)lf.. 
o 

Using Eq. (26), we can write 

aqJ I = fu d3ro f d3vo : 
at to t 

G(r, v;ro, vo,t - to) It 
o 

x qJ(ro, Yo, to). (29) 

Inserting (29) into (28'), we have 

where 

L(r,v;rl,vl ) = fn d 3 ro f d3roA(ro,vO;rl,vl) 

x ~ G(ro, vo; r, v, t - to) I . (31) 
at to 

Theorem 2: The function L defined in (31) satisfies 
the following relation called the Onsager reciprocity 
relation in kinetic theory: 

Proof: Let us write Eq. (12) as 

llqJ(r, v, t) = 0, 

where 

ll=~-P at 

(32) 

(12') 

is a linear operator defined on the Hilbert space Jc2, 

X2 = {qJ(r, v, t) is Lebesgue measurable; «qJ, qJ»2 < <Xl}, 
(33) 

where «t/I,qJ»2 = j'w dt(t/I,qJ)2 and qJ(r,v,t) is defined 
-00 

to be zero for t < to. It follows fro!!! the Lemma 2(c), 
(d) that the domain of ll, denoted by ~o 2' is indeed a 
natural extension of ~O,2 in JC2. Using Eq. (23), we 
obtain 

(AlT)"t = A(- :J -(AP)"tJ = TvTtAlT, (34) 

where T t is the transformation t ~ - t. 
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From the definition of U"tJ (t, to) [Le., (qJ(to),AU(t, to) 
qJ(tO»l = (AU(t, to)"t1 qJ(tO)' qJ(tO))l] and by using the inte­
gral representation of U(t,t o)' we have 

fo d3rl f d 3vjA(ri,vi;rl,vl )G"t(ri,v:..,tl ;r,v,t) 

= fo d3ri f d3v:..A(rl,vl.;r,v)G(ri,vl,t;rl,vl>tl)' 
(35) 

where G"t is a kernel of the integral representation of 
U"t1(t, to). The relation (35) becomes the familiar rela­
tionl2 if written with renormalized quantities 

G:1~ (rl,vl,tl;r,v,t) = Glj2(r,v,t;rl,vl>tl)· (35') 

Now combining Eqs. (34) and (35.), one obtains 

f d3ri f d3v'IA(rl,vI;rl>vI)G"t(ri,vi,tl;r,v,t) 

= f d 3r l d 3vI A(ri,- v1;r l - VI) 

x G(r1,- vi,- tl;r,- v,- t). (36) 

The Onsager reciprocity relation in kinetic theory (32) 
follows now immediately from Eqs. (31) and (36). 

VII. HYDRODYNAMICS 

Information about the behavior of solutions to Eq. (12) 
for large t can be obtained by discussing the spectrum 
of the linear operator P near;\ = O. Since we foilow 
the approach to fo only [Jo is independent of r, see Eq. 
(10)] one can expect that the Simpler discussion of the 
spectrum near ;\ = 0 of the spatial Fourier transforma­
tion of P yields a useful information. (More details re­
lated to this problem can be found in Ref. 4.) Discussions 
in this section require complexification of the Hilbert 
space JC 2. The properties (21) and (22) in Lemma 2 will 
read now as 

Re (qJ,AP("t)qJ)1 ::'S 0, 

Re (qJ,AP(-) qJ)1 = O. 

(21') 

(22') 

The following notation is used: cp = FqJ, P = FPF-I, 
where F = F r Iv, F r is the spatial Fourier transforma­
tion, Iv is the identity operator with respect to the de­
pendence on v. We shall assume J:hat k is fixed and 
I k I = k is small. The operator P and the function qJ 
for k fixed are denoted by Pk and qJk, respectively. The 
operator P k acts in the Hilbert space JC 2 k of functions 
qJrJ<' where the inner product is defined by (t/lk , qJk) 2 = 
J d3vt/lk (v)A. qJ k (v). We shall assume the 
f d 3 re ikr VCr) < <Xl. The explicit form of the operator 
P k can be found in Ref.l. All properties of P k and 
AltPk which we shall need follow immediately from the 
properties of P and AP derived in Lemma 2 or they can 
be deduced from the explicit expressions for Pit and A k 

by following step by step the discussion in Lemma 2. 
The great advantage of the space JC2, k over Je l , k used 
in Ref. 1 for a study of the spectrum of P k becomes 
evident if one compares the complicated and incomplete 
study of the spectrum P k in Ref. 1 with the simple and 
more detailed discussion which will follow. It must be 
pointed out, however, that in Ref. 2 the approach to any 
equilibrium state which is independent of r has been 
discussed. If we consider JC2, we require moreover 
that the equilibrium states to which the system is 
evolving are thermodynamically stable [Eq. (9)]. The 
condition defining the thermodynamic stability [Eq. (9)] 
has been obtained in Ref. 2 (by using however only 
models of P k and leaving out the study of the residual 
spectrum) as a condition for absence of the eigenvalues 
with positive real part (a condition for the linear stabi­
lity). 
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Theorem 3: The residual spectrum of the operator 
PIr. is empty; the essential spectrum lies in the region 
Re~ :S - 110 , where 110 = lim v _ 0 II(V); the points of the 
point spectrum can lie only between Re ~ = 0 and 
Re ~ == - II o' Moreover, if k is small the eigenfunctions 
corresponding to the eigenvalues closest to ~ == 0 are 
well approximated by linear combinations of five func­
tions, namely constant, v and v2 • 

Proof: Since this theorem is known for the Boltz­
mann equation4 •5 and its proof is based in fact only on 
the properties listed in Lemma 2, we can just sketch 
the main ideas. 

The residual spectrum of A kP k is empty as follows 
from Eq. (23) (by using the property that for each point 
~ of the residual spectrum of a linear operator, the 
complex conjugate of ~ lies in the point spectrum of 
its adjoint). It is worthwhile to note that the fact that 
the residual spectrum is empty is a consequence of 
the same property of the operator P[Eq. (23)] as the 
Onsager reciprocity relation (32). Hence, we have a 
link between the residual spectrum and the Onsager 
reciprocity relation which gives a physical interpreta­
tion of the problem of the residual spectrum. 

The essential spectrum can be discussed by using 
exactly the same method as that one used in the theory 
of the linearized Boltzmann equation (the Weyl-Kato 
theorem9 about the influence of a compact perturbation 
of a closed operator on the essential spectrum). The 
same method can be even used in both X 2 • k and Xl k.1 
The general result is that the essential spectrum lies in 
the region Re~ < - 110, where 110 == lim v _ o II(V). It 
means that the essential spectrum does not influence 
the asymptotic behavior (t ---7 <Xl) of cp(r, v, t). This re­
sult gives also a physical meaning to the essential 
spectrum. 

The most important part of the spectrum with respect 
to the long-time behavior of CPk(V, t) is that which is 
close to ~ == O. We have just shown that only point 
spectrum occurs in the vicinity of ~ == O. Equations (21), 
(22) mean, moreover, that there is no point spectrum 
with Re~ > 0, so that the points of the point spectrum 
can lie only between ReA == 0 and Re~ == - 110 , The 
operator AkPt) has the eigenvalue ~ == 0, its corres­
ponding eigenfunctions are 1, v, v2 [see Eq. (21)]. The 
operator AkP~-) is proportional to ikv for small k 
and large v. Because we want to get an information 
about the spectrum of A kPIr. near A == 0 if k is small, 
it is natural to consider AkP~-) as a perturbation of 
AkPk(+). This idea has been used first by McLennan9 in 
the theory of the linearized Boltzmann equation. Mathe­
matically, we have the unbounded operator AkPk(+) [un­
bounded due to the multiplication operator II(V)CPk] per­
turbed by another unbounded operator AkPk(-); ik is con­
sidered as a perturbation parameter. Mathematical 
theory dealing with such a problem is due to Rellich.9 
The basic idea is that a small k causes a small change 
in eigenvalues and corresponding eigenfunctions if the 
perturbation operator is relatively bounded with respect 
to the unperturbed operator (an operator A is relatively 
bounded with respect to an operator B if II A u II :s a II u II + 
b II Bull, where a, b are finite constants). Following 
McLennan5 we can show that indeed the operator AkPk(-) 

is relatively bounded with respect to AkPk(+); therefore, 
if k is sufficiently small, the eigenfunctions correspond­
ing to eigenvalues being closest to zero are close to 
1, v, v2 • 

From Theorem 3, we can now expect that for t large 
the state of the system is adequately described by five 

J. Math. Phys., Vol. 15, No.1, January 1974 

40 

quantities only (we shall call them renormalized hydro­
dynamic state variables): 

no(r, t) == J d3vA(1 + cp(r, v, t», 

no(r,t)uo(r,t) == J d 3 vAv(1 + cp(r,v,t», 

~ no(r, t) k B T o(r, t) 

(37) 

== J d3vA ;n(v-uo(r,t»2(1 + cp(r,v,t». 

We can now also conclude that an appropriate method 
for obtaining the long-time behaVior of the function 
f(r,v, t) in Eq. (1), approaching a single-phase thermo­
dynamically- stable equilibrium state, is the renormal­
ized Chapman-Enskog method. The function fer, v, t) 
is assumed to be dependent on time only through the 
renormalized hydrodynamic state variable (37). The 
first term in the expansion (in the space derivative) of 
the renormalized hydrodynamic state variable (37) is 
the corresponding renormalized local equilibrium state. 
The information about the properties of solutions to 
Eq. (1) which we have obtained so far implies that this 
renormalized Chapman- Enskog method is valid for the 
same reasons (f close to fo) as the usual Chapman­
Enskog method if applied to the Boltzmann equation. By 
putting c 1 == c2 == 1, c3 == c 4 == 0 into (37) (i.e., only the 
Boltzmann equation is considered) the renormalized 
Chapman-Enskog method becomes identical with the 
usual Chapman-Enskog method. 

We believe that the view of kinetic theory developed 
in this paper, which is basically an extension of non­
equilibrium thermodynamics, can be used for a study of 
further extensions of nonequilibrium thermodynamics 
which may lead to an exact microscopic dynamics. 
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Exact expressions for the cluster coefficients b 2 and b 3 for the one-dimensional Bose gas with 
repulsive h -function interactions are found. The calculation depends only on scattering information 
in the form of two- and three-body scattering wavefunctions. Although not in agreement with a 
previous calculation by Servadio, our results are shown to be consistent with the work of Yang 
and Yang which involves the use of periodic rather than scattering boundary conditions. 

I. INTRODUCTION 

Both the thermodynamic properties l - 3 and the S 
matrix4•5 are known for a system of bosons mOving in one 
dimension and interacting through repulsive Ii -function 
potentials. It is interesting to ask whether the statistical 
mechanics of this system can be deduced from the S­
matrix along the lines suggested by the general theory of 
Dashen, Ma, and Bernstein.6 In such an approach the 
solutions of the n-body problem in a finite domain are 
not needed; only scattering information is used to con­
struct the partition function. In addition to providing a 
specific illustration of the relationship between the S 
matrix and statistical mechanics, this type of calculation 
could be of practical use in finding new results for other 
one-dimensional gases where the S-matrix or scattering 
solutions are known4,5 but where the solutions satisfying 
periodic boundary conditions are not available. 

In this paper an exact expression for the third virial 
coefficient for the one-dimensional Bose gas with repul­
sive point interactions is found. The calculation uses 
scattering information in the form of the two- and three­
body scattering wavefunctions. The question of whether 
on-shell information alone is sufficient to determine the 
equilibrium thermodynamic properties of the gas is not 
answered, since our starting point is not the S matrix, 
but the cluster operator of Lee and Yang. 7 It is not 
clear whether the cluster coefficients may be expressed 
in terms of S-matrix elements since the formal limiting 
processes used in Ref. 3 are not valid for the Singular 
amplitudes of this system. We hope to return to this 
question later. However, we are able to demonstrate that 
the third virial coefficient may be calculated from the 
solutions of the scattering problem without invoking box 
normalization. 

Servadio8 has also applied the cluster formulation to 
the one-dimensional Bose gas with point interactions. 
Although our expression for the second cluster coefficient 
b 2 agrees with the result stated in Ref. 8, the results for 
the matrix elements of the third cluster operator U 3 
disagree. 

An independent check is provided by the work of Yang 
and Yang2,3 where the equation of state is found by a 
different method employing periodic boundary conditions. 
In the Appendix the results of this paper are shown to be 
consistent with the theory of Yang and Yang. In view of 
this agreement we believe that the expression given in 
Ref. 8 for the third cluster operator is incorrect. 

II. DEFINITIONS AND BACKGROUND RESULTS 

We consider a system of n bosons interacting through 
two-body repulsive Ii-function potentials of strength c. 
The scattering wavefunction ¢{k} associated with incoming 
momenta k 1 ••• kit is a linear combination of all possible 
plane-wave types4,9: 
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(1) 

The sum runS over all permutations P of order n and 
the coefficients a(P) are determined in terms of the 
momenta k l ' •• k n and the strength c of the interaction 
by 

a(P) = exp(l/2iL;<j1/lPi,Pj)' 

with 

(2) 

1/1 i,j = 2 tan-1 ( c ). 
ki - kj 

The wavefunction (1) is only valid in the region - 00 < 
Xl < x2 < x3'" < xn < 00, but the wavefunction in all 
other regions may be obtained from (1) by symmetry 
considerations. 

Gaudin9 has shown that the scattering wavefunctions 
(1) satisfy the closure relation 

(3) 

(4) 

We recall that the equilibrium pressure p and density 
p are determined in terms of the cluster coefficients bn' 
the fugacity z, and the inverse temperature {3 by 

00 

p = {3-1~ bnz n, (5a) 
n=1 

(5b) 

In the coordinate representation and in the infinite volume 
limit the coefficients bn may be calculated from the 
expression 7 

b n =..!.. f (O,X 2,x3,··· ,Xn /Un /O'X2"" ,xn)dx2•• .dxn• 
n! (6) 

The cluster operator Un is the connected part of the 
operator Wn == e -BHn , where Hn is the n-particle Hamil­
tonian. Explicitly, 

(xl/Ul/X l) = (xl/Wl/x l ), (7a) 

(xlx2/U2/xlx2) = (xlx2/W2/xlx2) 

- (xiIWI/XI)(x2/WI/x2)' (7b) 

(XiX2X3/U3/XIX2X3) = (x 1x2x 3/ W3 /x IX2x 3) 

- (xl/WI/xl)(X2x3/W2/x2x3) 

- (x2/ WI /x 2) (xjx 3/ W2 /x l x3) 

- (x3/ WI /x 3) (x1x 2/ W2 /x l x 2) 

+ 2(xl/WI/XI)(x2IWl/x2) 
x (x3/WI/x3),etc. (7c) 
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With the help of the complete set of scattering states of 
Eq. (4), the matrix elements of Wn may be expressed as 

(x'I Wn Ix) = 1 dk l • •• dkn¢{'k}(X /) 

exp[- /3(k~ + k~ + ... + k~)¢{k}(X). (8) 

Our aim is to calculate the coefficients b2 and b 3 
directly from Eqs. (7) using Eq. (8). The third virial co­
efficient is then given by 

a3 = (4b~ - 2b 3 )/br.. 

III. THE CLUSTER COEFFICIENT b 2 

The calculation of b2 from Eq. (7b) is quite straight­
forward but we include here some of the details which 
are repeated in the more complex calculation of b 3 in 
Sec. IV. The calculation is simplified by considering the 
difference between the coefficient b 2 and its value b~ = 
(41Ti3)-1/22- 3/ 2 in the ideal Bose limit, where the inter­
action strength c ~ O. In this limit the coefficients a(P) 
of the plane waves in Eq. (1) are unity. 

Using Eq. (8) we have 

( I -BH - BB 0 I ) X1X2 e 2 - e 2 X1X2 

- II. (21T)-2~ ~ Jdk Idk e-~f+~)ei(kpl-kQl) 
- 2 P Q I 2 

X e i(kP2-"Q2)'2 (a(P)a*(Q) - 1) 

= _1_ 1 dk
1
l dk2e-B(kf+kPeH"1-"J(xl-XZ\eiiJI12 - 1). 

(21T)2 (9) 

We note that the disconnected parts, Le., the terms which 
are indepemient of Xl and X 2 • cancel. From Eq. (3) the 
factor 

{21} = ej~12 -1 

in Eq. (9) is a Simple pole which may be written as 

J,
OO -j(k - k -ie)s = - 2c e 1 2 ds. 

° 
(10) 

With the help of this representation, the integrations over 
the momenta in Eq. (9) may be performed yielding 

( IU -Uol ) _-2c (!!.\(OO -<l/2B)(s+x2-xl)2-esd 
x 1X2 2 2 x 1X2 - (21T)2 f3!' ° e s 

- 2c 1T e(x -x) 100 -so/2B-CS == -- - e 2 1 _ e ds. 
(21T)2 /3 x 2 xI 

(11) 

The expression (11) is only valid for Xl < x 2 • However, 
it is easy to see from their definition that the matrix 
elements of U are symmetric in the coordinates, so that 
in order to calculate b2 from Eq. (6), we take 

b2 = Y2 10
00 

(Ox2 \ U 21 Ox2) dx2 + 1/21.° (x20 I U 21x20) dx 2• 
00 (12) 

From Eqs. (11) and (12), we find, on integrating by parts, 

b - bg = - 2c !!. 1. tJO dxe ex J 00 e-s2/2B-CSds 
2 (21T)2 /3 ° x 

= _1_J,00 dse-s2/2B(e-CS - 1). 
21T/3 ° (13) 

The results (11) and (13) have already been obtained by 
Servadio. 
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IV. THE CLUSTER COEFFICIENT b 3 

Again we consider the difference between b3 and its 
value bg (41Tf3)-1/23- 3/ 2 in the ideal Bose limit. From 
Eq. (7c), 

(xlX2x 3 lU 3 - U~ !X l x 2X3) 

( \ 
-BE -BHO, ) = X1X2X3 e 3 - e 3 XI X2X3 

- (Xl! e -IlBI Ixl ) (X2x31e -BH2 - e -M20 !X2X 3) 

- (x2 1 e -BH1!X2) (x 1x 3 \ e -BHz - e -Bli:!°\XIX3) 

- (X3\e-IlHllx3)(X 1X2 Ie BHz -e-IlHZO!XIX2)' (14) 

After using Eq. (8) and exploiting the symmetry in the 
momentum variables, the right-hand side of Eq. (14) 
becomes 

1 dke- Bk2([213]{213} + [132]{132} + [321 ]{321} 

+ [312]{312} + [231 ]{231} [213]{21} - [132]{32} 

- [321]{31}), (15) 

where we have introduced the notation 

[ijkJ == e ;(kl-ki)x1 e i<k:a-kj)~ e i(k3- kk)x3 , 

{ijk} = e i/2(iJl12+1/J13''''2S-'''ij-iJlik -1/Jjk) - 1, 

and 

I
dk e -ak

2 :::: _1_ Idk dk dk e -B<kf+ k~+ k:P 
(21T)3 1 2 3 • 

First we note that the coefficient {213} - {2l} of the plane 
wave [213] which represents the scattering of particles 
1 and 2 with particle 3 propagating freely, vanishes. 
Similarly the disconnected part [132] of the cluster 
integral, which results from the scattering of particle 2 
and 3 while particle 1 propagates freely, vanishes due to 
the cancellation of the three-body term {132} and the two­
body term {32}. On the other hand {321} and {31} are not 
equal, so that a term involving [321 J which is independent 
of x 2 survives. The different treatment of the scattering 
of particles 1 and 3 results from the definite ordering of 
the particles in the initial state. In order for particles 
1 and 3 to interchange momenta in three-body processes, 
they must also scatter from particle 2. It should also be 
remarked that although the term [321 J is independent of 
x 2 , there is no difficulty with convergence when inte­
grating over x?, in the process of forming the coefficient 
b 3 • Since x 2 is limited by the condition Xl < x 2 < x 3 ' the 
Xl and.%3 dependence is sufficient to produce convergence. 

By taking the above cancellations into account and by 
suitable relabeling of variables, the expression (15) 
becomes 

1 dke- llk2 (2[231J{231} + [32IJ({321} - {31}». 

In terms of the integral representation of the plane­
wave coefficients of Eq. (10), 

and 

{23l} = {21}{31} + {31} + {21} 

{321} - {31} = (1 + {31})({21}{32} + {2l} + {32}) 

= (1 - {31} + t{31})({21} + {32}), 

where 
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has been introduced. The identity for {321} - {31} in­
volving {3l} is not obvious but simplifies considerably 
the rest of the calculation. With these integral represen­
tations of the pole terms, the integrations over the 
momenta klO k2' and k3 can now be performed. In terms 
of the basic integrals, 

f(x) = - 2ce CX 100 
dse-s2/2B-Cs 

x 

and 
gc'(x,Y)= 4c'ce C'xe CYjOO dsjOOdt e-l/2B<s2+t2+st)e-c'se-ct, 

x Y 

the result is 

(xlX2x31U3 - U~IX1X2X3> 
= 2/(21T)3(1T/J3)3/2[gc(X3 - X2,X2 - Xl) 

+ e-3/SBtvx:t2f(l;l2(X3 + x 2) - Xl) 

+ e-3/SfN<1-X2)2f(X3 - 1f2(X 1 + x 2)) 

+ e-3/SfN<3-Xl)2f(1f2(X3 - Xl)) 

+ %g2c(X3 -xl'0) -gc(x3 -x1,0)]. (16) 

Only the first term in the above expression is given for 
the matrix elements of U 3 - ug in Ref. 8. From Eq. (6) 

b3 - bO = !jOO dx2 jOO dx3(0,X2,X3IU3 - U:PIO'X 2X3> 
3 6 -00 -00 

= ! j (x 1X2X31U 3 - U:p I X 1X2x 3)(c5(x 1) 3 x1<-'i!<x3 

+ c5(x2) + c5(x 3))dx 1dx 2dx3• (17) 

Our final expression for b 3 is obtained from Eqs. (16) 
and (17). After repeated integration by parts over the 
coordinates X lX2x 3, several terms cancel, leading to 

b3 - b~ 
= _6 __ (!!..)3/ 21000 

ds 1000 
dte-(1/2B)(s2+t2+ st) (e -cs-ct _ 1 )e-CS• 

(21T)3 {3 (18) 

In the Appendix it is shown that this result agrees with 
the work of Yang and Yang, which is based on the solution 
of the n-body problem with periodic boundary conditions. 
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APPENDIX 

In the theory of Yang and Yang3 th~ third cluster co­
efficient is determined by 

where 

a - e- Bk2 
1 - , 

a3 = e-Bk21f2(Qal)2 - 1f2Qa~ + Qa2, 

and Q is the integral operator 

C foo 1 
-; 00 dqc2 + (k-q)2· 

After some simplification, we obtain 

(AI) 

(A2) 

When the pole terms are expressed as integrals as in 
Eq. (10) and the integrations over the momenta per­
formed, the right-hand side of Eq. (A2) becomes 

_3_ (.?!..\ 3/2 roo dsjOO dt[e-1/2B<s2+t2+st) 
(21T)2 (3) -b 0 

+ e-l/2B(s2+t 2 -st)](e-CS _ l)e-ct. (A3) 

NOW, if f(s, t) is symmetric in s and t, then 

JOO dsjOO dte-(1/2B)(s2+t 2_ stlj(s,t) 
o 0 00 00 

= 2j ds 1 dt e-(1/2B)(s2+t 2+st>j(s + t, t). (A4) 
o 0 

Using the identity (A4) to simplify (A3), we obtain the 
desired result, Eq. (18). 
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Lienard-Wiechert fields and general relativity 
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An analogy is established between the Lienard-Wiechert solutions of the Maxwell equations and the 
Robinson-Trautman solutions of the Einstein equations by virtue of the fact that a principal null 
vector field of either the Maxwell or Weyl tensor in each case satisfies the following four conditions: 
(I) The field is a geodesic field, (2) it has nonvanishing divergence, (3) it is shear free, and (4) it is 
twist (or curl) t'ree. 

I. INTRODUCTION 

It is the purpose of this note to point out the very 
strong analogy between the Lienard-Wiechert solutions 
of the Maxwell equations and the class of solutions of the 
Einstein equations known as the Robinson-Trautman 
(RT) metrics. 1 More precisely the analogy is with the 
regUlar type II, RT metrics, all other RT metrics having 
unacceptable singularities. 

The RT metrics can be geometrically characterized 
by the following properties of one of the principal null 
vector (p.n.v.) fields of the Weyl tensor: (i) the p.n.v. 
field is the tangent field to a congruence of null geo­
desics; (ii) the field has nonvanishing divergence; 
(iii) the shear of the field is zero; (iv) the twist (or curl) 
of the field is zero. These conditions are both necessary 
and sufficient for a vacuum metric to be a RT metric. 

We will prove that a necessary and sufficient condition 
for a Maxwell field regular at infinity (in flat space) to 
be a Lienard-Wiechert field is that one of the p.n.v. 
fields of the Maxwell tensor satisfies conditions (i)-(iv) 
thus establishing the analogy. 

[We mention (without proof here) that this analogy has 
a rather remarkable generalization. It is known2 that 
the Maxwell equations can be analytically extended into 
complex Minkowski space. The real solution correspond­
ing to a "Lienard-Wiechert particle" moving in complex 
Minkowski space has a p.n. v. field which satisfies only 
conditions (i)-(iii). (For a special case of this, see Ref. 
2.) When the "particle" is confined to the real Minkowski 
space, (iv) is automatically satisfied. The analogy to 
this, in general relativity, is the class of suitably regular 
solutions of the Einstein equations satisfying (i)-(iii), 
namely, the regular twisting type II metrics. 3. 4 These 
solutions can be naturally viewed as being given on real 
subspaces of a complex manifold in which the source (a 
Lienard-Wiechert-like particle) is moving in the com­
plex region.] 

II. THE lIENARD-WIECHERT FIELD 

The Simplest way to prove our contention concerning 
the properties of the p.n.v.field of the Lienard-Wiechert 
solution is to use the spin-coefficient form of the Max­
well equations with a coordinate and tetrad system 
associated with the p.n.v. field. 

It is known5 that the most general null vector field 
satisfying conditions (i)-(iv) is obtained by taking a time­
like worldline (actually spacelike or null worldlines 
could be used, but they lead to unacceptable singularities) 
and constructing the light cone at each point on the 
worldline. The tangent vectors to the generators of each 
cone form the field in question. 

The null coordinate system associated with the family 
of cones can be introduced by the transformation6 

(1) 
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with x ll = ~ Il( cP) being the parametriC form of the world 
line (¢ is ../2/2 times the proper time), with 

1 ( - _~-~ _) 
III = -- 1 + ~~ ~ + l' -- - 1 + ~~ 2{2P

o 
,~, i' , 

- -
2 Po = 1 + ~ ~, ~ and ~ being comple~ stereograp~ic co-
ordinates on the sphere, and v(¢,~,~) = 11l~Il(¢)' ~1l~1l = 2. 

Our vector field in the new coordinate system has the 
form 

III = o~, 

and the Minkowski metric becomes 

V r2 d~d~ 
ds2 = 2(1--r)d¢2 + 2drd¢ - ---

v 2 P~V2 

= 2(Illnv -m/iiv)dxlldx V , 

with 

-rd~ 
m dxll =---v 

Il 2P' 

-rd~ 
iii dxll = --v. 

Il 2Po o 

The tetrad components of the Maxwell tensor 7 

¢1 = iFllv(lllnV + iiillm lJ
), 

¢2 = F jlViiillnv (2) 

satisfy the equations 

2¢1 v
2 

- (¢vo\, 
D¢1 + ---:;- = - -:; tio / 

¢2 V -
D¢2 = - = - - tiO¢1' 

r r 
(3) 

where the dot and D denote, respectively, the derivative 
with respect to ¢ and r, and tio and tio are angular 
derivates. 8 

The condition ¢o = 0 is equivalent to the statement that 
I is a p.n.v. of the Maxwell field. Our task is thus to 
lhow that the regular solutions of 
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(4) 

are the Lienard-Wiechert fields. 

Integrating the first two equations yields 

CPo = 0, 

(5) 

and substitution into the second set yields first ticp~ = 0, 
which implies CP~ = cp~(cp) and 

When Eq. (6) is integrated over the sphere (using the 
properties of ti~) we obtain 

~ (cp~ f v-2dO) = 0. 
dcp 

(6) 

(This is nothing but a special case of the law of conser­
vation of charge.) By explicit integration (or by using 
more general methods6 ), we find 

f v- 2dO = 411" 

and we have ¢~ = ° or cp£ = e. Thus the final equation to 
be solved [Eq. (6)] becomes 

That a solution is 

cp~ = - evtso (f) (7) 

can easily be checked by noting6 that v2tiO~O logPov = 1 
and differentiating with respect to cp; and that it is the 
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general regular solution is seen by viewing the differen­
tial equation in the instantaneous rest frame of the 
particle, i.e., when v = 1 and thus v (because ~Il is 
orthogonal to €Il) has only 1 = 1 spherical harmonic 
parts. The equation becomes 

One can immediately conclude (from the properties of 
ti~ and ti~) that the general regular solution is 

cpg = - etiov 

which is Eq. (7) in the instantaneous rest frame. 

Summarizing the results, we have for the tetrad com­
ponents of the Maxwell tensor 

CPo = 0, 

By a straightforward but tedious inversion of Eq. (2) 
one can convert this result into an expression for F IJV 

and verify that it is the Lienard-Wiechert field. Roughly 
this can be seen to be true by again viewing the solution 
in the instantaneous rest frame and noticing that the 
solution is just the Coulomb field and an electric-dipole 
radiation field depending linearly on the acceleration. 
These are known properties of the Lienard-Wiechert 
field. 

11. Robinson and A. Trautman, Proc. R. Soc. Lond. A 265, 463 (1962). 
'E. T. Newman, J. Math. Phys. 14, 102 (1973). 
3R. P. Kerr, Phys. Rev. Lett. 11,237 (1963). 
'c. J. Talbot, Commun. Math. Phys. 13, 45 (1969). 
5Though the author does not know a specific reference for this result, 
it is however common knowledge and can be inferred from the work 
of Robinson and Trautman. 

6A. Held, E. T. Newman, and R. Posadas, J. Math. Phys. 11,3145 (1970). 
'E. T. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
8J. N. Goldberg et al .• J. Math. Phys. 8, 2155 (1967). 
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Multipole moments are dermed for stationary, asymptotically flat, source-free solutions of Einstein's 
equation. There arise two sets of multipole moments, the mass moments and the angular momentum 
moments. These quantities emerge as tensors at a point A "at spatial infinity." They may be 
expressed as certain combinations of the derivatives at A of the norm and twist of the timelike 
Killing vector. In the Newtonian limit, the moments reduce to the usual multipole moments of the 
Newtonian potential. Some properties of these moments are derived, and, as an example, the 
multi pole moments of the Kerr solution are discussed. 

1. INTRODUCTION 

In general relativity, there are many exact solutions 
for which intuitive pictures are unavailable. One means 
of constructing such intuitive pictures in Newtonian 
theory is provided by multipole moments. The multi­
pole moments of solutions of Einstein's equation might 
similarly suggest interpretations of these fields. For 
example, if a Newtonian potential exists having the same 
multipole structure as a given solution of Einstein'S 
equation, that potential could be regarded as the New­
tonian analog of the given solution. 

One would not expect that all features of Newtonian 
multipole moments will survive the transition to general 
relativity, for curvature is likely to destroy the moments 
in regions near the sources. In fact, the existence of 
multipole moments in NewtQnian theory depends in an 
essential way on the (conformal) flatness of Euclidean 
space.! However, the moments may reappear as the 
curvature dies away, i.e., at large distances from the 
sources .. Thus we might expect that multipole moments 
exist for asymptotically flat space-times, and that these 
moments should be quantities "at infinity." 

A definition of the multipole moments of asymptoti­
cally fiat, statiC space-times has been given by Geroch.2 
The prescription for obtaining the moments is as 
follows: Introduce a 3-surface orthogonal to the time­
like Killing vector. On that 3-surface a poSitive-definite 
metric and a scalar field 1/1 are defined. Conformally 
complete the 3-surface by the addition of a single point 
"at infinity". The scalar field 1/1 then defines a smooth 
function!ji on the conformally completed space. The 
multipole moments of the space-time are given as cer­
tain combinations of the derivatives of!ji "at infinity." 

We shall extend the definition of multipole moments to 
stationary space-times. Two essential difficulties arise 
in this case. First, a replacement must be found for the 
surfaces orthogonal to the timelike Killing vector. 
Second, the field 1/1, in terms of which the multipole 
moments of static space-times were written, is unsuit­
able for the description of the moments of stationary 
space-times. 

A solution to the first difficulty, i.e., a 3-surface 
anologous to Euclidean space in Newtonian theory, has 
already been given3 : the manifold S of trajectories of 
the timelike Killing vector. Geroch has also discussed 
a set of equations on S which are equivalent to Einstein's 
equation for space-times admitting a timelike Killing 
vector. These equations will play, in our discussion of 
multipole moments, the role of Laplace's equation in 
Newtonian theory. 

The resolution of the second difficulty, that of finding 
suitable fields in terms of which to express the multi­
pole moments, is the subject of Sec. 2 of this paper. 
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There emerge two such fields, cfJM and cfJJ, analogous to 
the Newtonian mass and angular momentum potentials. 4 

These potentials are given by 

cfJM = {).-!().2 + w2 - 1), 
(1. 1) 

where ). is the norm and W the twist of the timelike 
Killing-vector. The prescription given by Geroch2 is 
applied to these potentials to yield two sets of multipole 
moments for each stationary, asymptotically flat solution 
of Einstein's equation. 

In Sec. 3, we use our definition of multipole moments 
to calculate explicitly the mass and angular momentum 
moments of the Kerr solution. Some possibilities for the 
further extension of the definition of multipole moments 
are discussed in Sec. 4. 

2. DEFINITION OF THE MUl TIPOlE MOMENTS 

The first step in the definition of multipole moments 
is the introduction of the 3-dimensional space. LetM, 
gab be a 4-manifold with metric of Signature (-, +, +, +), 
satisfying the vacuum Einstein equation. Let ~a be a 
timelike Killing vector field on M. Define A, the norm of 
~a,by 

). = - ~a~a, 

and wa by 

wa = £abctt~bvc~tt. 
It follows from the (vacuum) Einstein equation that 

(2.1) 

(2.2) 

(2.3) 

Thus, there exists5 a scalar field W (the twist of ~a) such 
that 

(2.4) 

The set S of trajectories of ~ a in M is (at least 
locally) a differentiable manifold. It was shown by 
Geroch3 that there is a one-to-one correspondence 
between tensor fields T,a ••• bc •.. tt on S and tensor fields 
Ta. ··b c ••. tt on M satisfying 

£t Ta ..• b c ... tt = 0, 

~aTa ••• bc ••• tt =O,···,~ttTa ••. bc .•. tt =0. 
(2.5) 

Accordingly, we shall speak of tensor fields on M 
satisfying (2.5) as tensor fields on S. In particular, ~ 
and ware tensor fields on S. The tensor field 

(2.6) 

Copyright © 1974 by the American Institute of Physics 46 



                                                                                                                                    

47 R. O. Hansen: Multipole moments 

is a positive-definite metric on S.6 Indices of tensors on 
S will be raised and lowered using h ab. 

We next require that the curvature of S die away at 
large distances from the sources, i.e., that S be asym­
ptotically flat. We use the definition given by Geroch.2 

A 3-manifold S with metric hab is said to be asympto­
tically flat if there exists a manifold S with metric hab 
such that: 

(i) S = SUA, where A is a single point, 

(ii) hab = 02hab is a smooth metric on S, 
and 

(iii) 01 =0, DaOI =0, DaDbOI = 2nabl ,whereDa is 
A A A A 

the derivative operator associated with nab' For example, 
Euclidean 3-space is asymptotically flat in this sense. 
Choose for the conformal factor, e.g., 0 = r -2, where r 
is the distance from some origin. 

Having defined the manifold of trajectories S and its 
conformal completion S, we now introduce the multipole 
moments of the fields cjJM and cjJJ, defined by (1.1). The 
symbol cjJ will denote either of these fields. 

Let $ = 0 -1/2 cjJ, and define recursively a set of tensor 
fields P a 1 ••• as on S by 

P = $, 

where e[Ta ... bl denotes the totally symmetric, trace-free 
part of T a ••• b, and <Rab is the Ricci tensor associated 
with nab. We define the 2s moment of cjJ to be the value 
of Pal'" as at A. The 2s moment of cjJM will be written 

Ma "'a , the 2s moment of cjJJ,Ja a. 
1 s 1·· .. s 

The formal definition of the multipole moments of a 
stationary, asymptotically flat space-time is now com­
plete. Given the metric gab of the space-time and the 
timelike Killing vector field ~ a , construct the manifold 
S of trajectories of the Killing vector and its metric h ab' 
given by Eq. (2. 6). Define the fields cjJ.J4 and cjJJ by (1. 1). 
Choose a conformal factor 0 so that S, 1i ab satisfies con­
ditions (i)-(iii) for asymptotic flatness. Substitute into 
Eqs. (2. 7) to obtain the moments Mal'" as and Ja1 ••• as • 

It is natural to ask whether our definition, applied to a 
Newtonian potential in flat space, yields the usual multi­
pole moments for that system. We now show that this is 
the case. 

Let cjJ be a Newtonian potential, Le., let cjJ satisfy 

(2.8) 

in Euclidean 3-space. Then cjJ posesses a multipole­
moment expansion, i.e., cjJ can be written in the form 

(2.9) 

where x a is the position vector7 with respect to some 
origin, and Qa

1 
•.• as' the 2s moment of cjJ about that origin, 

is a constant tensor field. 

Define the new position vector7 xa = r-2x a withrespect 
to the origin "at infinity." The series (2.9), expressed in 
terms of xa, takes the form 

cjJ = r- 1 Q + r-1Qaxa + ~r-1Qabxaxb + .... (2.10) 

It was noted above that 0 = r -2 is an appropriate choice 
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(2.11) 

It follows immediately from (2.11) that 

where Da is the derivative operator associated with hab • 
Note that the expressions (2.12) coincide, in the case of 
vanishing curvature, with those of (2.7). Thus our 
formulation, applied to a Newtonian potential in flat 
space, yields the correct values for the multipole 
moments of the system.s 

We have seen that the multipole moments defined by 
Eq. (2.7) have the correct values for a Newtonian system. 
Recall, however, that the usual multipole moments of that 
system refer to an origin, and depend on the choice of 
that origin. The behavior of the Newtonian multipole 
moments under a change of origin is in fact reflected, in 
our formulation, by the behavior of the multipole 
moments defined by (2.7) under a change of conformal 
factor. The role of the choice of conformal factor has 
been. discussed by Geroch.2 We shall review that dis­
cussion briefly. 

Conditions (i)-(iii) for asymptotic flatness do not 
determine the conformal factor uniquely. In fact, one can 
choose any conformal factor 0' of the form 

0' =Ow, (2. 13) 

where 0 is a conformal factor satisfying conditions (i)­
(iii), and w is any smooth function whose value at A is 1. 
Since arbitrary conformal transformations can be gener­
ated by repeated application of infinitesimal ones, it 
suffices to consider the case in which w differs infinite­
simally from 1. 

The multipole moments which result from the use of 
the conformal factor 0' are related to those associated 
with 0 by 

P~I ... a I = Pa ... a I - h(2s - 1)e[Pa1 ... a Da wll. 
SA J S A s-1 S A 

(2. 14) 

Notice that the change in the 2s moment depends only 
on the 2 s - 1 moment. Geroch2 has shown that this 
behavior reflects precisely the usual dependence of 
Newtonian multi pole moments on the choice of origin. 

It is remarkable that our definition of multipole 
moments makes no reference to Einstein's equation. 
One would expect Einstein's equation to assume the role 
of Laplace's equation in Newtonian theory. But the pre­
scription of Eqs. (2. 7) could be applied, on three-dimen­
sional Euclidean space, to a much larger class of func­
tions than the solutions of Laplace's equation: Any func­
tion/ such that/ = 0-1121 is smooth at A could be used. 
Of course, not Ilvery function / on Euclidean 3-space 
defines a field 1 which is smooth at A. The function must 
tend to zero "at infinity" at least as fast as r -1. In addi­
tion' its "angular oscillation" must die away at infinity. 

The solutions of Laplace's equation which tend to zero 
at infinity do indeed satisfy these requirements: Roughly 
speaking, the radial and angular dependence of those 
functions are coupled through their second derivatives. 
More precisely, recall that Laplace's equation in three 
dimensions is conform ally invariant, that is, if cjJ 



                                                                                                                                    

48 R. O. Hansen: Multipole moments 

satisfies (2.8), we have 

D2 cP = 0 (2. 15) 

on S. But it is well known that solutions of Laplace's 
equation either diverge or are smooth at any point. 
Since cP is bounded at A, its derivatives of all orders 
exist and are continuous there, Le., $ is smooth. Thus 
Eqs. (2. 7) indeed define a collection of tensors at A if ¢ 
is a Newtonian potential. 

The point, then, is that Eqs. (2. 7) lead to a meaningful 
definition of multipole moments in general relativity 
only if ¢M and ¢J define fields $M and CPJ which are­
smooth at A. The above discussion for Newtonian fields 
depends in an essential way onthe properties of Laplace's 
equation. This suggests that Einstein's equation should 
be used to establish the necessary smoothness of CPM and 
CPJ. 

Geroch3 has given a set of equations on S, equivalent 
to Einstein's equation for spacetimes admitting a time­
like Killing vector. These equations, written in terms of 
¢M and ¢J' take the form 9 

(DmDm - <R/8)¢M = (1%)K 4¢M' 

(DmDm - <R/8)¢J = (1%)K 4¢J' 

<Rab = 2[(Da¢M)(Db¢M) + (Da¢J)(Db¢J)] 

(2.16) 

- HDa(l + 4¢J + 4¢J)1/2][Db(1 + 4¢~ + 4¢})1/2], 

(2. 17) 
where <Rab is the Ricci tensor and <R the scalar curvature 
associated with hub, and where K is defined by 

(2.18) 

The arguments which were used to show smoothness 
for solutions of Laplace's equation suggest that the con­
formal behavior of these equations will be important. 
Notice that Eqs. (2.16) are conformally invariant pro­
vided that ¢ and K have dimensions10 sec- 1/ 2 ; thus we 
have 

(2.19) 

where <R is the scalar curvature associated with nab' 
Equation (2.19) is an elliptic differential equation on S; 
its coefficients will be smooth on S if 'K is smooth at A. 
Thus, cP will be smooth if K is smooth. What remains is 
to show that K is a smooth function on S. 

It follows from Eqs. (2.16) and (2.17) that K satisfies 
the elliptic differential equation 

DmDmK = (<R/8)'K + (%)'K5 + K-7~abcll1abc 

+ K-7P( cP ,15a cP, DJJb cP, K, D aK, Iii, Dalii, jj a Db Iii) , 
(2.20) 

wher~ Iii = tX- 1 (X 2 + w2 + 1), and ll1abc = D[a(<'nb)c -
tnb)c<R) is the Bach tensor of nab •l1 The function P (which 
vanishes for static solutions) is a conformal invariant of 
dimensions sec-6 provided that Iii is dimensionless. 12 
Thus (2.20) is a conformally invariant equation, whose 
coefficients will be smooth at A if 'if an21ii are smooth 
there. Hence K will be smooth on S if ¢ and Iii are 
smooth. 

The function Iii satisfies the confo:rmally invariant 
elliptic differential equation 

DmJjmlii = 6K4 1ii + 2(CPk + cp})-lJjmi{;(CPMDmCPM + CPJDmcpJ) 

+ 21ii(4i{;2 - l)(CP~ + CPJ)-2(CPMDmCPJ 

(2.21) 
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The coefficients of (2.21) will be smooth on S if K and 
cP are smooth. Thus, Iii will be smooth if cP and 'K are 
smooth. But now our argument has become circular. 
The smoothness of cP follows from that of K; the smooth­
ness of K follows from that of liJ and i{;; and the smooth­
ness of i{; follows from that of cP and K. 

Surprisingly enough, such a circular argument is 
precisely what is needed. Consider Eqs. (2. 19), (2.20), 
and (2.21) as a set of coupled, second-order elliptic dif­
ferential equations for $, K, and it;. If the coefficients of 
these equations are of class C n , their solutions are 
either discontinuous at A or of class cn+2 (cf. Ref. 13). 
But ;p, K, and i{; are known to be continuous at A. It 
follows inductively that they are Coo functions at A .14 

Thus Eqs. (2. 7) indeed define multipole moments for 
the stationary gravitational field. The procedure for 
obtaining the moments is as follows: The conformally 
completed manifold S is constructed from the manifold 
of trajectories1..S, The potentials ¢M and ¢J then define 
smooth fields ¢M and CPJ on S, from which, via the re­
cursive relations (2.7), the multipole moments Ma ." a 

1 S 

and Ja ••• a are calculated. In the next Sec., we shall use 
1 s 

this procedure to calculate the multipole moments of the 
Kerr solution. 

3. THE MULTIPOLE MOMENTS OF THE KERR 
SOLUTION 

In recent years, there has been considerable interest 
in those solutions of Einstein's equation which might 
repreElent the exterior field of a collapsed object. In 
particular, it appears that the Kerr solution15 is the 
only candidate for the exterior field of a stationary black 
hole. 16 We shall here calculate the multipole moments 
of the Kerr solution, using the definition of Sec. 2. 

Certain simplifications occur for the multipole 
moments of any axisymmetric space-time. In that case, 
there exists a Killing vector ."a in S, Le., a vector field 
satisfying 

(3.1) 

The conformal factor mar be chosen so that 1ia (= 7ja) 
is also a Killing vector on S : 

£ijnab = 0; 

and so that the axis vector 

za = 2'EabcDb1ic 

is a unit vector at A: 

(3.2) 

(3.3) 

zazal = 1. (3.4) 
A 

The axis of the axial Killing vector passes through A. 
Thus, the action of the axial Killing vector defines rota­
tions on the tensors at A, under which the multi pole 
moments must be invariant. Since the only tensors at A 
invariant under the action of the axial Killing vector are 
outer products of the metric and the axis vector, the 2s 

multipole moments are necessarily multiples of 
e[Z ••• z ] I , the symmetric, trace-free outer product of 

41 as A 

the axis vector with itself. Thus the 2s moments are 
completely determined by the numbers Ms and Js ' defined 
by 

(3.5) 
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Stationary, axisymmetric solutions have, in addition to 
the axial Killing vector, a reflection symmetry, whose 
action reverses the sign of the axis vector and of ¢J' 
but leaves ¢M invariant. Thus the mass moments 
Ma •.• a are invariant under the action of this symmetry, 

1 R 

and the angular momentum moments Ja •.• a are re-
I s 

versed in sign. But the moments are multiples of 
e[z •• 'za ] I, so only even mass and odd angular mo-

al S A 

mentum moments will occur. Furthermore, the Kerr 
solution depends on only two parameters (m and a). 
Thus the multipole moments Ms and Js are functions 
only of these two parameters: 

(3.6) 

We can compute the multipole moments of the Kerr 
solution directly from (2.7). In Boyer-Lindquist co­
ordinates,15 the spatial metric takes the form 

da 2 = (r2 - 2mr + a2 cos20)(r2 - 2mr + a2)-ldr2 

+ (r2 - 2mr + a2 cos20)d0 2 

+ (r2 - 2mr + a2) sin20d¢2. (3.7) 

The norm and twist of the timelike Killing vector are 
given by 

.\ = (r2 - 2mr + a2 cos20)(r2 + a2 cos2fi)-1 (3.8) 

and 

w = 2ma cosO(r2 + a2 cOS20)-I. (3.9) 

Defining a new radial variable R by 

r = R-I[l + mR + i(m 2 - a2)R2], (3.10) 

and choosing for the conformal factor 

we obtain for the conform ally transformed metric 

d'52 = dR2 + R 2d0 2 + {I - a2R2 sin2 0[1 

- i(m 2 - a2)R2]-2}-IR2 sin20d¢2. (3.12) 

It is easily verified (by introducing Cartesian co­
ordinates, for example), that this metric and conformal 
factor satisfy conditions (i)-(iii) for asymptotic flatness, 
with A at the point R = O. The fields (PM and (PJ are 
given by 

(PM = - m[1 + i(m 2 - a2)R2]{[1 - i(m 2 - a2)R2J2 

- a2R2 sin20}-3/4 (3.13) 

(PJ = maR cosO{[1 - i(m 2 - a2 )R2J2 - a2R2 sin20}-3/4. 

Substituting (3.13) into Eq. (2. 7), we obtain I 7 for the 
multipole moments of the Kerr solution 

M 2s = (- l)s+lma2s , M2s+I = 0, 

J2s = 0, J2s +I = (- l)sma2s +l • 
(3.14) 

HernandezI8 has given these multipole moments in the 
weak-field apprOXimation, where the problem reduces to 
finding the moments of a Newtonian potential in flat 
space. Since our moments turn out to be linear in m, one 
might expect to obtain the same result in this case from 
the weak-field approximation. Our moments also agree 
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with the formulas given by Newman and Janis I9 for the 
lowest moments of the Kerr solution. The agreement 
here is more surprising, since the definition of multipole 
moments used by Newman and Janis involves fields at 
null infinity. 

4. DISCUSSION AND CONCLUSIONS 

In this section, we shall discuss some features of the 
potentials ¢M and ¢J' and suggest some possible future 
developments for multipole moments in general rela­
tivity. 

We shall first show that, in an appropriate limit, ¢M 
and ¢J reduce to Newtonian potentials in a Euclidean 3-
space. Consider a one-parameter family M,gab(j.L) of 
stationary solutions of Einstein's'equation (without 
sources), such that for j.L = O,gab(O) is a flat metric onM. 
Without loss of generality, we may take the Killing vector 
~a to be independent of j.L.20 Then S is also independent 
of j.L as a manifold, but its metric hab(j.L) is not. Of 
course, the fields ¢M and ¢J in general depend on j.L. 

If S is to be asymptotically flat, the Killing vector ~a 
must reduce, in the flat-space limit, to a vector field 
which generates time translations in Minkowski space; 
hence we have ¢M(O) = 0, ¢J(O) = 0, and hab(O) is a 
Euclidean metric. Then Eqs. (2.16) and (2.17), written" 
to first order in j.L, become 

DmDm¢M = 0, 

DmDm¢J = 0, 
(4.1) 

and 

ffiab = 0, (4.2) 

where t a ... bc ... a is used to denote d/dj.L(To ... bc ... cl (j.L)), 
and where all quantities appearing in (4.1) and (4~ 2) are 
evaluated at j.L = O. Note that Eqs. (4.1) are simply 
Laplace's equation in a Euclidean 3-space. Thus the 
functions ¢M and ¢J reduce, in the linearized theory, to 
Newtonian potentials. 2 I 

Our choices for the mass and angular momentum po­
tentials may still seem rather arbitrary. Certainly any 
member of a large class of fields could have been used 
to define the multipole moments of the space-time. In 
fact, another possible candidate (in the static case) for 
the mass potential was given by Geroch.2 However, this 
function does not define a smooth field on S for the case 
in which the Killing vector is not hypersurface-ortho­
gonal; nor does any obvious generalization of this func­
tion. Another possible chOice, for example, for the mass 
potential would be thefunction(¢~ + ¢J)1I2. The smooth­
ness of this field, with dimensions sec-1I2, follows 
directly from the smoothness of ¢M and ¢J. Further­
more, this function has the same Newtonian limit as 
¢M· 2I 

Thus the potentials we have used in defining the multi­
pole moments are by no means unique. This ambiguity 
in the choice of the potentials reflects the ambiguity in 
the passage from Newtonian theory to general relativity. 
We have, in fact, taken advantage of this freedom to 
choose potentials which emphasize the analogy between 
stationary gravitational fields and stationary electro­
magnetic fields. The fact that ¢M and ¢J satisfy the 
same Eq. (2. 16) suggests that mass and angular momen­
tum may be treated "on the same footing" as sources of 
the gravitational field. In this respect, stationary gravi­
tational fields can be considered analogous to stationary 
Maxwell fields, in which both the electric and magnetic 
scalar potentials satisfy Laplace's equation. 
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A notation arising from the fact that ¢M and ¢J satisfy 
the same equation is developed in the Appendix. This 
notation casts Eqs. (2. 16) and (2.17) into a particularly 
simple form, and considerably reduces the work of per­
forming computations. 

Although the presence of curvature introduces ambig­
uities in the definition of the mass and angular momentum 
potentials, the lowest-order behavior of the fields is un­
affected by curvature. For example, curvature cannot 
create monopole angular momentum fields in asympto­
tically flat space-times. We shall sketch a proof that 
this is the case. 

One of the field equations, in the presence of matter, 
takes the form 3 

(4.3) 

so that the expression 

r ~-2w dSm Js m , (4.4) 

evaluated over any 2-surface in S enclosing the sources, 
vanishes. The surface S lies in a region free of sources, 
so that wa is a gradient. The expression (4.42 may then 
be written entirely in terms of quantities on S, i.e., in 
terms of ;PM' ¢J,Ti ab , and n. Shrinking S onto the point A, 
one sees that the vanishing of (4.4) implies the vanishing 
of the angular momentum monopole: 

(4.5) 

Thus, the presence of curvature does not affect the 
lowest-order behavior of the angular momentum field. 

A number of questions about the multipole moments of 
stationary space-times remain unanswered. For 
example, Geroch's2 conjecture that the multipole 
moments of a static space-time uniquely determine its 
structure (at least in some neighborhood of A) may also 
be made for stationary space-times, and remains an 
open question. 

One might also ask if the moments can be expressed 
in terms of integrals over the source distributions of 
the stationary field. Whether this can be done is not at 
all clear, for the multipole moments defined here are 
quantities "at infinity", while the sources of the field all 
lie in bounded regions of S. The curvature of S prevents 
us from transporting the multipole moments to finite 
regions. Thus the problem of expressing the multipole 
moments as integrals over the source distribution 
appears to present serious difficulties. 

Can the definition of multi pole moments be extended to 
more general contexts, e.g., to solutions of Einstein's 
equation admitting no Killing vectors? A straightforward 
generalization of our approach seems unlikely to 
succeed. The conformal completion of spacelike sur­
faces in an arbitrary, asymptotically flat space-time has 
only a Co structure.22 This lack of sufficient smoothness 
structure appears to preclude the introduction of multi­
pole moments along the lines we have fOllowed, i.e., as 
the values at infinity of the derivatives of some poten­
tials. In fact, multipole moments at spatial infinity 
apparently do not exist, even for electromagnetic fields, 
except when the field is stationary. A better understand­
ing of the multipole moments of the electromagnetic 
field would probably shed light on the gravitational case. 

The possibility of a definition of multipole moments 
for nonstationary gravitational fields as quantities at 
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null infinity appears more promiSing. One definition of 
this type has been discussed by Janis and Newman.23 

Of course, these moments are in general time-dependent, 
since radiation escaping from the system is registered 
at null infinity. It would be interesting to attempt to re­
formulate the construction of Janis and Newman along 
the more geometrical lines we have followed here. 

Perhaps multipole moments could be introduced for 
stationary, asymptotically flat Einstein-Maxwell fields. 
The analogy between stationary gravitational fields and 
stationary electromagnetic fields discussed above 
suggests this is likely to be the case. One would expect 
to obtain four sets of moments, corresponding to the mass, 
angular momentum, and the electric and magnetic poten­
tials. The formalism given by Geroch3 can be used to 
write the field equations for stationary Einstein-Maxwell 
fields in the form 

DmDmE == ~-l[(Dm~)(DmE) - wmDmJ3], 

DmDmJ3 == ~-l[(Dm~)(DmJ3) + WmDmE], 

DmDm>" == ~-l[(Dm~)(Dm~) - wmw m] + [(DmE)(DmE) 

Dmwm == 2>..-l(Dm~)wm' 

D[awbl == 2(D[a E)(Db1 J3), 

+ (DmJ3)(DmJ3)], 

(4.6) 

ffiab == %>..-2[(Da>")(Db>") + wawb ] - >..-l[(Da E)(Db E) 

+ (D a J3)(DbJ3) ], 

where E and J3 are electric and magnetic scalar poten­
tials. The twist vector wa of the timelike Killing vector 
field is now no longer curl-free, but a corrected version, 
given by wa - (EDaJ3 - J3DaE), is. The idea is to find 
combinations of these fields, which, like ¢M_ and ¢J in the 
source-free case, define smooth fields on S. Equations 
(2.7) would then yield, from these four potentials, the 
electromagnetic and gravitational multipole moments. 
More generally, one might try to introduce multipole 
moments for the stationary gravitational field coupled 
with spin s massless fields. 
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APPENDIX: NOTATION 

The fact that arbitrary linear combinations of ¢M and 
¢J satisfy Eq. (2. 16), and the fact that only certain 
simple combinations of these fields occur in our equa­
tions, suggest the introduction of a notation which formal­
izes these features. In practice, this notation consider­
ably reduces the labor in performing computations. 

It can be verified that the solutions of 

(A1) 

which are functions only of >.. and W form a three-dimen­
sional vector space V. The potentials ¢M and </>J span a 
two-dimenSional linear subspace of V. Consider V * (the 
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dual space of V), the space of linear mappings from V to 
R. Define tensors over V and V* as the multilinear 
mappings from V and V* to R. It is convenient to denote 
the elements of V by objects with a Greek superscript, 
e.g., v"-; and the elements of V* by objects with a Greek 
subscript e.g., p. • Tensors of arbitrary rank are then 
given the 'approp~iate number of Greek subscripts and 
superscripts to indicate their rank as multilinear map­
pings over V and V*. For example, a tensor of second 
rank over V may be written T,,-B. We adopt the usual 
index conventions for Greek indices. Index substitution 
and contraction, for example, have their usual meanings. 

We define objects with both Greek and Latin indices as 
the multilinear mappings from V and V* to tensor fields 
on S. For example, if ~"- is an element of V and 7],,- an 
element of V*, we may write 

TabctB~"-7]B = I\.ab, 

where I\.ab is a tensor field on S. In particular, an object 
with no Latin indices is now a multilinear mapping from 
V and V* to scalar fields on S. We define the action of 
the derivative operator Da on objects with both Greek and 
Latin indices in terms of its action when the object is 
contracted with arbitrary elements of V and V*, e.g., 

7]a~BDaTbCaB = Da(TbcaB7]a~B) 

for all7]a in V* and ~a in V. 

We next introduce <P a , a distinguished member of this 
algebra. Letf be a solution of (A1), and letf a be the 
corresponding element of V. Define <P a by 

(A2) 

for all f. It is convenient to introduce a metric GaB of 
Signature (-, +, +) on this algebra, such that 

(A3) 

and 

DaGaB = 0, (A4) 

where GaB is the inverse of GaB. 

Equations (2.16) and (2.17) now take the form 

DmDm<Pa = 2ffi<pa, 

ffi ab = t(D a <P a)(Db <P a), 
(A5) 

where Greek indices are raised and lowered using GaB. 
Computations are conveniently carried out using this 
notation. For example, the function F which appears in 
Eq. (2. 20) takes the form24 

F = (Dc<pBDc<PB)(DaDb<paDaDb<Pa) 

- (Dc<paDc<pB)(DaDb <PaDaDb <PB) 

+ (Db<pBDaDb<pa)(Dc<paDaDc<PB) 

- (Db <paDaDb<pa)(Dc<pBDa Dc<PB) 

+ t(Da <p a Da <Pa)3 

+ t(Da <p a Da<Pa)(Db <p BDb<P Y)(D c<PBDc<Py). (A6) 

Recall that <PM and <PJ span a two-dimensional subspace 
of V. In fact, a basis may be introduced in V, in terms 
of which the components of <P a are (1/1, <PM' <PJ). Further­
more, Eqs. (A5) are now seen to be invariant under 
"Lorentz transformations" in V. Thus, if FaB satisfies 

F ctB = F [aB] , (A7) 
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(AS) 

then Eqs. (A5), written in terms of <p~, take the form 

DmDm<P~ = 2ffi<p;', 

ffiab = (Da <p' a)(Db <P;'). (A9) 

Hence, application of this Lorentz transformation leads 
to a new stationary solution of the vacuum Einstein 
equation. 

In fact, the Lorentz transformations on V are precisely 
the transformations discussed by Geroch in Ref. 3. The 
SO(2) subgroup of those transformations which cannot be 
reduced to pure gauge may be realized as the spatial 
rotations in V, Le., rotations in the (<PM' <PJ) plane. We 
are thus led to interpret the transformations given by 
Geroch, in the case of a timelike Killing vector field, as 
rotations between the mass and angular momentum po­
tentials, analogous to the duality rotations of stationary 
Maxwell fields. 

Unfortunately, except in the case of vanishing mass, at 
most one of the family of solutions obtained in this way 
can be asymptotically flat. Under such a rotation, the 
angular momentum potential will, in general, acquire a 
monopole component. But, as we have seen, monopole 
angular momentum fields cannot occur in asymptotically 
flat spaces. Thus, the transformations (AS) apparently 
do not preserve the asymptotic flatness of the space­
time. 

* This research has been presented as a thesis to the Department of 
Physics, University of Chicago, in partial fulfillment of the require­
ments for the Ph.D. degree. 
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Admissible forms of the static solutions to the SU(3) gauge field equation are examined. It is shown 
that by a proper choice of the form of solutions which extricate the SU(3) indices. the set of 
nonlinear partial differential equations is reducible to nonlinear ordinary differential equations for 
the radial functions. 

I. INTRODUCTION 

In a previous paper coauthored by one of US,l some 
static solutions of the classical SU(2) isotopic gauge 
field2 equations were discussed. A crucial feature is the 
fact that by a judicious choice of the form of solutions 
which properly extricate the isotopic indices, the set of 
nonlinear partial differential equations is reducible to 
nonlinear ordinary differential equations for the radial 
functions. 

The purpose of the present note is to examine the 
static case of SU(3) unitary gauge field3 equations. We 
find that the above feature also holds for the SU(3) gauge 
field equations. 

II. LOCAL SU(3) GAUGE FIELD 

As is well known, the number of the gauge field com­
ponents is equal to the dimension of the regular repre­
sentation of the underlying group. For SU(3), this number 
is eight. The octet gauge field may be arranged in terms 
of 3 x 3 matrices. 

summed over A = I, •. , 8, (1) 

where K is a scale factor and ~A are the set of eight 3 x 
3 Gell-Mann matrices4 satisfying the commutation rela­
tion 

[~A' ~B] = igfB~e' 
Let 

F,..v = Kf,..1~A' 
where 

f A = cA - cA K~O'A eDeE 
/.Ill ,...v v.,.. - ""'BE ,.. v' 

(2) 

(3) 

(4) 

in which E is the coupling constant and the comma with 
respect to 11-, II is a short-hand notation for the differen­
tiation 

(5) 

Away from sources, we take as the free Lagrangian 

.co = - if/.lllAf,..1. (6) 

The equation of motion reads 

(7) 

Substitution of Eq. (4) then gives 
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From here on, we choose the scale so that 

KE = 1. (9) 

III. STATIC CASE 

We shall primarily be interested in the static situation 
where 

c: = 0, 

C1.4 = O. 

(lOa) 

(lOb) 

Thus the only nonvanishing components are the spatial 
ones. 

Furthermore, the subsidiary condition holds: 

(11) 

Instead of the label A = I, ..• ,8, we find it convenient 
to adopt double indices lm, each running from 1 to 3. 
The traceless condition would give us still eight inde­
pendent components Dr. Under such a correspondence, 
we make the following transcription. 

For the indices: 

A -? 1m, B -? pq,D -? rs,E -? uV,F -? xYj (12) 

for the field 

(13) 

and for the structure constants 

gABD -? Slm,pq,TS' (14) 

Explicitly, the structure constants read 

(15) 

Equation (8) becomes then for the static case 

DtJj + S$q.rs(2Dr.~ - Dn)4pq 

- g~~.rsg:~,xy D/!lDr Dr = 0, (16) 

where the comma with respect to the spatial components 
i or j only denotes a differentiation. 

IV. FORM OF STATIC SOLUTIONS 

We look for the static solutions to the field equations 
(16) in the following form: 
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where I and h are two functions of the radial distance r 
alone, r = (x~ + x~ + X~) 1/2. 

It should be emphasized that for Eq. (16) to be satis­
fied for every internal index, severe restrictions must 
prevail on the admissible forms of the solutions. It is 
rather remarkable that the choice (17) indeed gives a 
consistent solution. In other words, the symmetric com­
bination EXX (in front off) and the antisymmetric com­
bination EEX (in front of h) become jOintly preserved 
under the operations indicated on the left-hand side of 
(16). After a straightforward calculation, their co­
efficients can be collected. The vanishing of these co­
efficients gives a pair of coupled nonlinear ordinary 
differential equations for I and h. The result is 

I" + 6r- 1/' - 141h + 7r21h2 - r 4f3 = 0, 

h" + 4r- 1h' + 7r2f2 - 3h2 - 7r4f 2h + r 2h 3 = O. 

Or, in terms of a (F, H) pair defined as 

F == r 3f, 

H == 1-r2h, 

Eq. (18) reads 

F" + r-2F(- 13 + 7H2 - F2) = 0, 
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(lSa) 

(lSb) 

(19a) 

(19b) 

(20a) 
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H" + r-2 [4- (5 + 7F2)H + H3] = O. (20b) 

We shall not attempt to discuss the solutions to Eqs. 
(20) here except by making the following obvious 
remarks. 

(i) Equations (20) possess three real singular points 
located at 

(
0 ) and . 
%(- 1 ± {I'f) 

(ii) In (17), thef part solutions cannot exist by itself, 
while the h part can, Le., when h = O,j = 0; however, 
when f = 0, h has nonzero solutions. 

.. Work supported in part by the U.S. Atomic Energy Commission. 
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Calculation of the internal energy and heat capacity of the general anisotropic triangular Ising lattice 
is derived from the double integral form of the partition function. The principal result is the 
reduction of the elliptic integrals to a standard form for three arbitrary coupling constants. Both the 
standard form and the method of reduction are due to Legendre. The method of reduction is one 
involving two linear transformations. A straightforward reduction of elliptic integrals to standard 
form could not be used in this application. This is because of the functional dependence of the two 
linear transformations on the many combinations and permutations of the signs and relative 
magnitudes of the coupling energies of the lattice. A relatively simple formulation is presented 
in which the many combinations and permutations previously mentioned are reduced to only two 
distinct cases. An independent numerical solution was calculated directly from the partition function 
as a means of verifying the formulation presented in this paper. 

I. INTRODUCTION 

Several independent solutions for the energy and heat 
capacity of the triangular ISing lattice appeared in 1950. 
Wannier1 and independently Husimi and Syozi2 solved 
the isotropic case. Houtappel,3 Newell,4 and Temperley5 
solved the general problem of anisotropic coupling 
(except for the final calculation of the thermodynamiC 
quantities) in which the nearest neighbor coupling 
energies J; in each of the three principal directions in 
the lattice are distinct (Le., J 1 "" J 2 "" J 3). In doing so, 
all three derived a double integral expression for the 
partition function in the general anisotropic case. Hout­
appe13 and Temperley5 then took the isotropic case 
(J 1 = J 2 = J 3) in formulating the energy and heat 
capacity, while Newell4 presented the corresponding 
results for a particular anisotropic case in which two 
coupling energies are equal and the third is independent. 
This paper presents the general anisotropic formulation 
of energy and heat capacity. 

The prinCipal activity in the development is the re­
duction of elliptic integrals to standard forms. The 
standard forms are those of Legendre. The particular 
reduction used (the reduction not being unique6 ) is one 
introduced by Legendre and further developed by 
Cayley7 involving two linear transformations. Although 
the reduction of elliptic integrals to standard form is 
well-known and is usually a straightforward matter, the 
case here is tedious and complicated by the large number 
of possible combinations and permutations of the signs 
and relative magnitudes of the three coupling energies, 
and the influence they have on both the choice of the 
linear transformations and the specific representation of 
the elliptic integrals in standard form. The probability 
of error or of an unnecessarily cumbersome resultant 
formulation is very high, especially when compared to 
the much simpler isotropic case in which incidents of 
both have been noted in the literature.S - 10 Therefore, 
the analytiC development presented in this paper was 
verified in the same manner as most complicated 
analytiC integration formulas: an independent numerical 
solution was made for comparison. In this independent 
solution, the energy and heat capacity were computed 
directly from the integral form of the partition function 
via numerical quadrature. 
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II. FORMULATION 

The starting point of the formulation is the integral 
expression for the partition function of the general aniso­
tropic triangular Ising lattice; 1,3,4 

(
A\ 1 J,211J,211 

In i)= 87T2 0 0 In[ cosh2K 1 cosh2K2 cosh2K 3 

+ sinh2K1 sinh2K2 sinh2K3 - sinh2K1 COSW 1 
- sinh2K2 cosw2 -sinh2K3 cos(W1 + w2 ))dw 1dw2 , 

(1) 

where K; = J;lkT,J; is the coupling energy in the ith 
principal direction in the lattice, k is Boltzmann's con­
stant, and T is the absolute temperature. The desired 
results are closed-form expressions for (i) the expecta­
tion value of the normalized lattice energy and (ii) the 
lattice heat capacity. These quantities are given below 
as derivatives of the logarithm of the partition function: 

(2) 

(3) 

Expression (1) cannot be completely integrated in 
closed form. 1.3•4 Therefore, after some changes of 
variables, rearrangements, and integrations, expression 
(2) will be applied, thus allowing a complete closed-form 
integration. Let 

a = cosh2K1 cosh2K2 cosh2K3 +sinh2K1 sinh2K2 sinh2K3 , 

(4) 

b = - sinh2K l' 

c = - sinh2K2 , 

d = - sinh2K3. 

(5) 

(6) 

(7) 

Expression (1) becomes, after the changes of variables, 
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rearrangements, and integrations, 

( 
,\) 1 [J, 21rJ, 271 In 2" = 81T2 0 0 In(a + b coswl)dwldw2 

+ f0271 f021r In(1 + u sinw2 + v COSW2 )dWldW 2], (8) 

where 

u = - d sinwl/(a + b coswl)' 

v = (c + d coswl)/(a + b coswl ). 

The first term integrates immediately for w2 and 
from tables for Wl' The integration over w2 in the 
second term is listed in the integral tables of Bierens 
DeHaan.ll Applying (2) to the result of these integrations 
and simplifying, we find 

(E) = - tl J i [0; In(a + -/a - b2)l/2 

(9) 

where 

t:. = r(l - x 2 )(b 2x 2 + 2(ab - cd)x + a2 - c2 - d2)]l/2 

(14) 

and 1 is as defined in (12). 

The reduction of the elliptic integrals in (13) will now 
be made and will follow the method of Legendre as pre­
sented and developed further by Cayley.7 The elliptic 
integrals in (13) are of the general form 

f R(x)dx 
IX ' 

(15) 

where R(x) is a real rational function of x, and X is a 
real quartic function with real coefficients of the form 

X = (~ + 21)x + ex2 )(,\ + 2tJX + /lX 2 ). (16) 

Two linear real transformations are involved. In the 
first, x is replaced by 

p + qx 

l+x 

In the second, x 2 is replaced by 

A + Bx2 

C + Dx2 ' 

Application of (17) to (15) reduces it to 

R'dx 
f [± (1 ± mx 2)(1 ± nx2)]1/2 
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(17) 

(18) 

(19) 

where the subscript has been dropped from Wl' and 
where 

0=_0_ 
i-oK' 

i 

f = (a + b COSW)2 , 

g = c2 + d2 + 2cd cosw. 

56 

(10) 

(11) 

The first integral in (9) is an elementary form. The 
second integral is a combination of elliptic integrals. 
Before going into their reduction to standard form, the 
first integral is combined with the first term and 
simplified: 

- Jz coth2Kz, 

where 

{
2, 

1= 
3, 

J~ >J~ 

J~ < J~. 
(12) 

Rewriting the second integral by changing integration 
variables, noting that the integrand is an even function 
about w = 1T, and substituting for f andg from (10) and 
(11), we have 

and application of (18) to (19) further reduces it to 
standard form 

where R' and R" are the singly and doubly transformed 
rational functions of x, respectively,m and n are real, 
positive numbers; and the modulus k is a real function of 
m and n such that k 2 < 1. 

Transformation (17) is determined by the two 
conditions 

~ + 1)(P + q) + epq = 0, 

,\ + IL(P + q) + vpq = O. 

By (13) and (16), 

~ = 1, 1) = 0, e = - 1, 

Combining (21), (22), and (23), we find 

q = p-l, 

(21) 

(22) 

(23) 

(24) 

(26) 

The transformation must be real. Therefore,p and q 
must be real, and thus we must have 
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Analysis of [2j.t/(>. + II)] for all values of J 1,J2,J 3' and 
T show this to be the case. It will be convenient to leave 
p as a parameter in the transformation, thereby allowing 
greater flexibility [by being able to vary the sign of the 
radical in (26)] in choosing a Simpler end result, as will 
be seen later. 

Continuing with the first transformation, by combining 
(25) with (17) and applying the result to (15), postponing 
the transformation of R for the moment, and using the 
limits of integration in (13), we get 

where 6. ' is defined as 

6. ,= [(1 - x 2)(1 + m'x2)]1/2, 

m' = (II + 2J.LP + >.p2)/(>. + 2J.LP + IIP2), 

( 
1 - p2 ) 1/2 

Q = >. + 2j.tp + vp2 • 

(27) 

(28) 

(29) 

We now have the form (19) with n = 1 and m not yet 
determined. 

This completes the first transformation on the 
integrals in (13), except for the rational functions R. 
These functions do not necessarily influence the linear 
transformations. They do determine, however, the 
specific standard forms taken by the elliptic integrals. 
They will be transformed after the second transforma­
tion has been accomplished. 

For the second transformation, Eq. (20), there are five 
distinct possibilities. 7 As a result of (28) and the limits 
of integration in (13), only two are of interest. 

Case I (50 in Ref. 7, p. 318): 

The denominator of (19) becomes 

(30) 

with m > n and x from 0 to 1lln, or from l/..Jm to !Xl. 

In this case, (18) becomes 

y2/m . 

Case II (20 in Ref. 7, p. 318): 

The denominator of (19) is 

[(1 - nx2)(1 + mx2»)1/2 

with x2 < 1/n. 

In this case (18) is 

(l/n)(l - x 2 ). 

(31) 

(32) 

(33) 

By comparing (28) with (30) and (32), and by the limits 
of integration in (27), we have, in terms of m I, 

- 1 < m I < 0 =:> case I with m = 1, n = - m I, and the 
second transformation is the identity 
transformation, (34) 
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m' > 0 =:> case II with n = 1,m = m', and the second 
transformation is x 2 replaced with (1 - x 2 ). (35) 

Analysis of m I as a function of the four independent 
variables J l' J 2, J 3' and T over their full ranges shows 
that if the sign of the radical in (26) is not fixed, then 
the condition 

-!Xl<m' <-l (36) 

can always be avoided by chOOSing convenient signs. The 
last condition to be satisfied is that Q in (27) be real. 
Analysis of Q, in the same manner as that of m I, shows 
that the sign of the radical in (26) can always be chosen 
to make Q real, and in doing so, the condition in (36) is 
never encountered. Therefore the second transforma­
tion will always be either case I or case II. 

With the first and second transformations determined, 
we now apply these transformations to (13), including the 
function R. The result, after extensive Simplification, is 

(E) = - Jl coth2K
1 

3 

- ~ Ji[CilF(k) + C;211(r,k) + C;3n(t,k)], (37) 
;= 1 

where F(k) is the complete elliptic integral of the first 
kind of modulus k, and where l1(r, k) and l1(t, k) are com­
plete elliptic integrals of the third kind of modulus k and 
parameters r and t, respectively. The modulus k and the 
parameters r, t are real and satisfy k 2 < 1 and - !Xl < 
r, t < !Xl. The definitions of k, t, and r depend on which 
form the second transformation takes. 

Case I: 

r =p2, 

_t~)2 t - , 
1 + ep 

where 
2cd 

e=---. 
c2 + d2 

Case II: 

k 2 = m ' /(1 + m'l, 

r = p2/(p2 - 1), 

(e + p)2 
t = ----:----

(1 - e2)(p2 - 1) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

The coefficients Cij are not in final form, since a 
specific representation of the complete elliptic integrals 
of the third kind has not yet been determined. They will 
therefore be given later. 

Each of the two elliptic integrals of the third kind can 
be expressed as combinations of complete and incomplete 
elliptic integrals of the first and second kinds, and more 
compactly in terms of Heuman's>, function,12 defined as 

Ao(lI, k) = (2/lT) [E(k) F(lI, k') 

+ F(k) E(lI, k') - F(k)F(lI, k ' )], 
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where 

k' == "/1-k 2, 

and E(k), F(O, k'), and E(8, k') are the complete elliptic 
integral of the second kind, and the incomplete elliptic 
integrals of the first and second kinds, respectively. 

There are four possible representations of the elliptic 
integrals of the third kind. Without listing the specific 
forms,12 the conditions that determine them are, in 
terms of the modulus k and the parameters rand t 

r,t < 0, 

0<r,t<k2, 
(44) 

k 2 <r,t<l, 

1 < r,t. 

In addition to being functions of J l' J 2' J 3' and T, the 
quantities k, r, and t also depend on the form of the 
second transformation. An extensive analysis of these 
quantities was made over the full range of their indepen­
dent variables, including variations of the second trans­
formations. It was determined that of the four possible 
conditions in (44), the third always holds in case I and 
the first always holds in case II. Applying this result to 
(37) and noting that the linear independence of the coupl­
ing energies, the linear independence of any pair of the 
three kinds of elliptic integrals,13 and the linear inde­
pendence of the elliptic integrals of the third kind in (37) 
having different parameters, all combine to preclude a 
further Simplification in the number of independent 
terms. As a result, we have the final form for the expec­
tation value of the normalized lattice energy: 

3 3 

(E) == - Jz coth2Kz - ~ Rl J i Cij 1/1 j , 

where 1 is given by (12), and 

1/1 1 == F(k), 

1/1 2 == AO(Or, k), 

1/1 3 == A O(8t ,k), 

(45) 

and k, Or, 0t, and the coefficients C;j depend on which 
form the second transformation takes; k is given by (38) 
and (41). 

Case I: 

with r given by (39), 

( 
t-k2) 1/2 

8 t == sin-1 [(1- k 2 ) , with t given by (40), 

Q ( (b + ap)(d + CP)C') 
C21 == 2rrp a2P - (c2 + d2)(e + P) , 

C == _~ (a _ (b + ap)(c + dP)d') 
31 2rrp ~ (c2 + d2)(e + P) , 
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Q ( 1 - P2) 1/2 
C 12 == - - ---- b'sgn(P), 

4 p2 - k 2 

C22 == - t coth2K2 tanh2K1C12 , 

C 32 == coth2K3 tanh2K2C 22 , 

C ==_~(ae-b)(I-P2)1/2 
23 8 (l+ep) t-k2 
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X coth2K2 sgn(c2 - d2) sgn[2cd + P(c2 + d2)], 

C 33 == - coth2K3 tanh2K2C23 · 

Case II: 

. (r ) 1/2 ° == sm- 1 ---
r r _ k2 ' 

with r given by (42), 

8 == sm-1 --. ( t ) 1/2 
t t _ k2 ' 

with t given by (43), 

C - Q 
11 - 2rr·J1 + m' ( 

b'p \ 
at + k2(1 _ p2) + pi;' 

Q ( (b + ap)(d + pc)c' 
C == a p - -------

21 2rrph + m' 2 (c2 + d2)(e + P) 

k2(1 - p2)bc' k2p 
+ ----

2(k2(1 - p2) + p2)c k2 - t 

(ae - b)(1 + ep)dc'\ , 

(c 2 - d 2 )(e + p)e ; 

C _ Q f (b + ap)(c + dP)d3 
31 - 2rrpb + m' \a~ - (c2 + d2)(e + P) 

k 2(1 - p2)bd' k2p(ae - b)(1 + ep)cd' ) 
+ + , 

2(k2(1 - p2) + P2)d (k 2 - t)(c2 - d2)(e + p)e 

Qb' ( I-p2 ) 1/2 
C == - sgn(P) 

12 4../1 + m' k2(1 _ p2) + p2 ' 

C22' C 32 ' and C13 same as for case I, 

C _ _ Q c'd(ae - b) 
23 - 4v'1 + m' e(c2 _ d2)..J7i2=T sgn(e + P), 

C 33 same as case I, 

where 

sgn(x) == { ~ 
-1 

and 

x>O 
x==O 
x<O 

a; == dia, b' == - 2 cosh2KlJ 

c' == - 2 cosh2K2, d' == - 2 cosh2K3, 

For the heat capacity, we combine (2) and (3), and apply 
the result to (45): 
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where 

and {j lE is the Kronecker {j function. 

The partial derivatives 

can be found in Ref. 12. The derivatives o.k, (J.(Jy, (J.t, as 
well as (J ,Ci are straightforward but tedious, numbering 
60 in all, and therefore will not be given here. 

Taking the isotropic case for (45), we get 

(E) = - J coth2K + OlF(k), 

where 

Ol = QJ/7T,ff"T;nt(csch2K - e 4K sinh2K). 

(47) 

Houtappel's corresponding equation has three different 
forms for Ol and k; one for J < 0,0< T < co, one for J > 
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0, T < Tc (critical temperature), and one for J > 0, T > 
Tc' In (47), there are only two forms of O! and k, one for 
J < 0 (case I) and one for J > 0 (case II). 

AssumingWannier's corrected formula1 0, 14 correspond­
ing to (47), his is simpler still, having only one form for 
both J < 0 and J > O. It is unlikely, however, that this 
one formulation would hold for the general anisotropic 
lattice. Thus the two cases presented here are a likely 
minimum formulation. 

'G. H. Wannier, Phys. Rev. 7<);' 357 (1950). 
2K. Husimi and I. Syozi, Prog. Theor. Phys. 5, 177,341 (1950). 
3R. M. F. Houtappel, Physica 16,425 (1950). 
'G. F. Newell, Phys. Rev. 79,876 (1950). 
5H. N. V. Temperly, Proc. R. Soc. A 202, 202 (1950). 
6Bateman Manuscript Project, 1953, Vol. 2, p. 304. 
7A. Cayley, An Elementary Treatise on Elliptic Functions (Dover, New 
York, 1961), pp. 311-318. 

·C. Domb, Advan. Phys. 9, 213 (1960). 
·P. H. E. Meijer, and G. W. Cunningham (unpublished). 

lOG. H. Wannier, Phys. Rev. B 7, 5017 (1973). 
"D. Bierens DeHaan, Table of Integrals 2, 332, p. 472 
12p. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for 

Engineers and Physicists, (Springer-Verlag, Berlin, 1954). 
I3Reference 7, pp. 1-5. 
I4The author pointed out to US that his erratum contained an error. In 
the first column there are two equivalent forms given for k. The first 
is correct. The second should have in the numerator as the second 
factor 3 + 1 11 I, not 3 - 1 11 I. 
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An explicit expression is given for the unit element E of the ring generated by the 
~uffin-K.emmer-Petiau (DKP) operators /3~. The relation of E to the unit operator I (unit matrix 
III a matnx representation) is also derived. It is pointed out that one must be careful to distinguish 
E from I. Bhabha's observation that one may use the irreducible representations (irreps) of the Lie 
algebra so (5) to obtain the irreps of the Dirac, DKP, and other algebras is given a concise and 
general se~ting in terms of ~ relation between the Lie algebra s 0 (n + 1) and a family of semisimpie 
oper~tor ~Illgs. We emphasIze that for the case n + 1 = 5 this means that there is an underlying 
relationshIp between the physical DKP and Dirac algebras and wave equations. 

1. INTRODUCTION AND RESUME 

There has been a renewed interest in the use of the 
Duffin1 -Kemmer2 -Petiau3 (DKP) algebra for the des­
cription of interactions in meson physics. The details of 
these physical applications have been described else­
where. 4 - 7 The present paper is mathematical in con­
tent and is intended to serve three purposes: (a) to 
demonstrate by explicit construction the existence of a 
unit element E of the algebra generated by the four DKP 
operatorsS f3 1, f3 2 , f3 3 , f34 , where we are careful to note the 
distinction between E and the unit operator I which is 
customarily adjoined to the algebra: a fact which is often 
only implicit (hence, is a potential source of confusion)' 
(b) to bring into sharper focus a method for finding the' 
inequivalent irreducible representations (irreps) of the 
DKP algebra9 by using the theory of Lie algebras (a 
method which does not require knowing the number of 
basis elements in the ring); and (c) to point out the 
generality of this approach for the representation theory 
of rings. 

For completeness of presentation, let us recall briefly 
the basic properties of the DKP algebra. The DKP ring 
R f is the algebra over C which is generated by the four 
operators {3jl (tJ == 1, 2, 3, 4) which satisfy 

( 1) 

The operators f3 (tJ == 1,2,3,4) occur in the DKP meson 
field equation and the resulting algebra is of particular 
interest to physicists. In our discussion we will use the 
follOwing properties of the f3 operators which follow from 
Eq.(l): 

f3~{3v + {3v{3~ == {3v, tJ '" II, 

f3jl{3Vf3jl == {3jlojlV, (2) 

{3Jf3~ == (3~{3~ • 

The contents of this paper are organized as follows: In 
Sec.2 we give the unit element E of the DKP ring R f and 
demonstrate its relation to the 126 basis elements2.io of 
the ring R obtained by adjoining the unit operator I to R '. 
The standard basis elements of R are listed in Table I. 
The generalization of these results to n operatorsll 
satisfying Eq. (1) is also noted. In Sec. 3, we consider 
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some general aspects of the Lie algebra so(n + 1), n == 
2,3, ... , generated by the operators Jab = - J ba (a, b == 
1,2, • ", n + 1). The principal result which is obtained 
is the relation between the irreps of this Lie algebra and 
the irreps of a class of semisimple algebras which in­
cludes the generalized Dirac algebra 12 and DKP algebra 11 

Rn as special cases. Although this relation is perhaps 
implicit in Bhabha's work13 for n == 4, the generalization 
to all n 2: 2 is not trivial and appears to be not widely 
known. For the physically interesting case n == 4, it is, 
of course, the covariance of relativistic wave equations 
(finite number of components) under Lorentz trans­
formations 14 which accounts for the occurrence of these 
algebras.13 

To summarize: The principal new results presented 
are (a) the explicit relation between the unit elements 
of ~he algebrasR; andR n [Eq.(14)];and (b) Theorem 2, 
WhICh states the relation between a class of semisimple 
algebras and the Lie algebra so(n + 1) for arbitrary n 2: 

2. 

2. THE INDEPENDENT ELEMENTS OF THE DKP RING 
It is often not made clear in the literature whether one 

is dealing with the ring R' generated by the operators 
f3jl (tJ == 1, 2, 3, 4) alone or with the ring R generated by I, 
f3Jl (~ =:= .1, 2, 3, 4), where I is the unit operatorS which, by 
aejzmtzon, has the properties 1f3 == {3 I == {3 and, more 
generally, IR' == R'I == R f. The ~ing R' hat its own unit 
element which we denote by E, and the point to note is 
~at.E a.nd I are distinct operators in the ring R. This 
dIstmctIon15 becomes quite clear when one considers 
the. particular representation {3jl ~ 0 (zero operator) in 
WhICh case E ~ 0, but I, of course, is still the unit 
operator (represented by the unit matrix in any finite 
dimensional matrix representation). The purpose of 
this section is to clarify these differences by exhibiting 
explicitly the expression for E in terms of the generators 
(3)l [Eq. (3)]; thi~ result is then used, in turn, to establish 
(m R) the relation [Eq. (10)] between I and E. 

We begin by recalling the definition of the elementary 
symmetric functions: 

<Pl(Xjl) == L; xjl' <P2(Xjl) == L; xjlXV' 
jl ">jl 

(3) 
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Then we have 

Theorem 1: The DKP algebra R' generated by the 
four operators f31" (IL = 1,2,3,4) has a unit element which 
is 

(4) 

= CPl(f3~) - CP2(f3~) + CP3(f3~) - CP4(f3~)· 

Proof: The theorem can be proven using Eqs. (2) by 
a somewhat tedious direct verification of Ef30 = f30E = E 
(only one value of a is needed because of the permuta­
tional symmetry) and,consequently,ER' =R'E =R'. A 
more elegant proof is given below. 

We next consider the expression for the unit element 
E in terms of the commuting operators 1/~ which are 
defined by 

1/~ = 2f3~ - E in R ' • (5) 

Note that the operators 1/~ in R' are not to be confused 
with the similarly defined operators 

1/ I" = 2f3~ - I in R • (6) 

Obviously the relation between the two definitions is 

1/~=1/I"+I-E inR. (7) 

The four operators 1'/~ generate a commutative sub­
algebra of the DKP algebra R'. One can establish directly 
as a corollary to Theorem 1, the expression for the unit 
element E of R' in terms of the 1/~ operators. 

Corollary. The expression for· the unit element of 
the DKP meson algebraR' in terms of the 1/~ operators 
is 

(8) 

Let us now look at the connection between E and I when 
considered in the larger ring R. This will allow us to 
give a transparent demonstration that E is the unit 
element in the ring R'. We start by observing that 

4 n (E - (32) = 0 inR'. 
1"=1 jJ 

(9) 

However, 

4 4 
A;E; n (I-f3~)= n MI-1'/jJ)=I-E inR, (10) 

jJ = 1 J.l = 1 

so that 

E2 = (I - A)2 = E. (11) 

Since it is trivial to verify the relation Af3 = f3 A = 0, 
we obtain immediately the result, II II 

(12) 
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which, together with property (11), expresses the fact 
that E is the unit element in R' • 
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Let us summarize: The semisimple ring R has 126 = 
12 + 52 + 102 independent basis elements (Table I) and 
the ring R' has 125 independent basis elements (Table I 
with I deleted and 1'/1l replaced by 1'/' );E and I are each 
represented by the unit matrix in the five- and ten­
dimensional irreps of the algebra, but, in the one­
dimensional irrep f31' ~ 0, E corresponds to 0, whereas I 
corresponds to 1. 

We close this section by observing that all these 
results can be carried over directly to the n dimensional 
DKP algebra (1-1 = 1, ... n). Specifically, the unit element 
En of the algebra R~ is 

n 

En = ~ (- 1)s+ICPs(f3~), 
s =1 

(13) 

and its connection to the unit element I" of the algebra 
R" is 

3. THE GENERALIZED DKP, DIRAC, AND so(N) 
ALGEBRAS 

(14) 

An illuminating method for obtaining all the irreps of 
the DKP algebra is to consider the irreps of the Lie 
algebra so(5) of the group of real proper orthogonal 
matrices of dimension five. Since the method applies 
quite generally to a class of semisimple algebras which 
may be obtained from the Lie algebra so(N) of the group 
of real proper orthogonal matrices of dimension N, we 
will describe this more genetal case16 thereby obtaining 
a semi simple algebra, <B~k), which for k = 1/2 becomes 
the generalized Dirac algebra12 and for k = 1 becomes 
the generalized DKP algebra. II The irreps of this 
algebra are given explicitly (up to an equivalence) by the 
known irreps of the basis elements of the Lie algebra 
so(n),17-20 

As stated in the introduction, while the results pre­
sented here for N = 5 are perhaps already either explicit 
or implicit in Bhabha's13 treatment of relativistic wave 

TABLE I: The 126 independent elements of the DKP meson algebraR. 
In column (a) the independent elements are listed in terms of f3 and f32. 
In column (b) the independent elements are listed in terms of l and " 
1)" = 2f3~ - I. ~ 
Elements: (a) (b) Number of Elements 

f3" f3" 4 

f3"f3 v f3"f3 v 12 

f3"f3 vf3 o f3"f3 vf3 o 12 

f3"f3 vf3o f3 p f3"f3 vf3 o f3p 6 

f32 
" 1)" 4 

{3Bf3~ 1)" 'Iv 6 

f3Bf3~f3~ 'I"'Iv'lo 4 

f3~f3~f3~f3~ 'I" 'Iv'l 0 'Ip 
f3~f3v 'I"f3 v 12 

f3~f3vf3o 'I"f3vf3 o 24 

f3~f3vf3o f3 p 'I"f3 vfJ o f3 p 12 

f3~f3~f30 11" 'Ivf3 o 12 

f3~f3~f3of3p 'I"'I vf3 of3 p 12 

f3;f3~f3~f3p 'I" 'Iv'lo f3 p 4 

126 
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equations, it nonetheless seems worthwhile to review 
briefly the basic algebraic relations and to state the 
basic results for the general case, since the generaliza­
tion does not follow automatically from the specific 
case. In this respect, we should point out that there 
exists other work21 based on Bhabha's results for n = 4, 
as well as work22 dealing with related questions. 

A basis of an operator realizationS of the Lie algebra 
so(N) is given by the set of Hermitian operators 

a, b = 1, 2, .•. , N (15) 

which satisfy the commutation relations 

Let us suppose that we are ~iven a set of Hermitian 
operators {all: /l = 1,2, ... , nj which satisfy the double 
commutator relations 

[[all,aV],a,J =a/lVA-a"oIlA' /l,II,;\=1,2, ••• ,n. (17) 

We may then define Hermitian operators {JaJ in the 
following manner: 

JIl •n + 1 = - I n + 1 •1l = all' Jllll = - i[all , av]' 

I n + l .n + 1 = O. (18) 

Using these definitions, the assumed double commuta­
tor property of the all' and Jacobi's identity for commuta­
tors, it is straightforward to prove that the Jab satisfy 
Eq. (16) where N = n + 1. Conversely, given a set of 
Hermitian operators Jab satisfying the Lie algebra rela­
tion (16), then the n Hermitian operators defined by 

/l = 1,2, ... , n (19) 

satisfy Eq. (17). 

The proof of the following result may now easily be 
given (and we omit it): Each inequivalent irrep of the Lie 
algebra so(n + .1) determines an inequivalent irrep of 
the operator algebra (17), and conversely. The Signifi­
cance of this result is immediately apparent when we 
remark that both a = y /2, where y is a Dirac 
operator (/l = 1,2,!' .. , n), and all = 'Ill' where i3

1l 
is a 

DKP operator (/l = 1,2, ... ,n), are particular examples 
of Hermitian operators which satisfy the algebraic 
relation (17). In order to understand more fully the 
origin of this property, we next discuss several relations 
relevant to the irreps of so(N) 

Each irrep of so(N) is specified by a set of ordered 
numbers 

{IN} = {lfl~ ... In, (20) 

where r = N/2 for N even and r = (N - 1)/2 for N odd. 
These numbers are either all integers or all half­
integers which satisfy 

(21) 

where for odd N the last number 1: in the sequence (20) 
is nonnegative, Le., IN ::0: 0 for odd N. The dimension of 
the irreducible repr;sentation spec'ified by {IN} is given 
by 

2r - 1 
dim{lN} = ---=----

2!4!···(2r-2)! 

for N = 2r (r = 1,2, ... ), and by 

IT (A7 - A~) 
i<j~ 1 
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dim{lN} = 1 n (2A i + 1) 
1!3!" ·(2r - I)! i~1 

T 

X . IT [Ai (A •. + 1)-A (;\J. +1)] (23) 
'<J~1 J 

for N = 2r + 1 (r = 1,2, ••• ), where the ;\i are defined 
by 

;\ i = If + r - i. (24) 

[For r == 1 the product term of differences is defined to 
be unity in Eqs. (22) and (23).] 

A second important property of the basis (15) of so(N) 
is the unitary equivalence of each generator Jab to a par­
ticular generator, say,J 12' This latter generator is it­
self a member of the tripletJ = (J23,J3VJ12) whose 
components satisfy the commutation relations of an 
angular momentumJ. This Signifies that an irreducible 
representation of J 12 [as an element of the so(N) 
algebra] is equivalent to a direct sum of diagonal block 
matrices of various dimensions 2j + 1 for certain values of 
j selected from 0, 1/2 , 1, %, ... ,where each such block 
itself has diagonal elements m == j ,j - 1, ••• , - j. Noting 
further that in the irreducible representation {IN} the 
eigenvalues of J 12 are m = If, If - 1, ... , - If, we may 
assert: Each all satisfies the minimal characteristic 
equation 

IN 
1 

IT (all -mIl = 0 
m~-lf 

(25) 

in the irrep {IN}. The proof follows directly from the 
Cayley-Hamilton theorem for Hermitian matrices and 
the properties mentioned above. 

We are thus led to introduceS the following algebra 
over C for each integer of half-integer k: 

Theorem 2: Let ffi~k) denote the algebra generated 
by I (unit operator) and aI' a 2 , ••• , an which satisfy 

[[all' au], a 1\] = allovl\ - allo llA , 
k 

IT (all -mIl = O. 
m~- k 

Then: 

(26) 

(27) 

(a) ill ~O) is the trivial algebra with elements 0, I. 

(b) ffi!1/2) is the Dirac algebra. 

(c) ffi~l) is the DKP algebraRn • 

(d) All the ineqUivalent irreducible Hermitian 
matrix representations of ffi;}'> may be obtained from the 
known representations of the Lie algebra so(n + 1) 
through the identification all = ~.n+I' Specifically. the 
irreps of ffi~) may be deSignated by {In+ 1}, where k 
together with {In + I} is any set of integers or half­
integers satisfying [cf. Eq. (21)] 

(28) 

(e) The algebra ffi~ is semisimple. 

(f) The rank of the algebra ffi<:) is given by the sum 

rankffi~k) = ~ (dim{ZM+I})2, 
un + I} 

(29) 
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where the sum is either over all integers {In+1} or all 
half-integers {In+1} satisfying Eq. (28). 

(g) The property (trace all) = 0 holds in each repre­
sentation (irreducible or reducible) of the all' 

The proofs of the above statements (a)-(g) are con­
tained in the Appendix. 

The ranks of the Dirac and DKP algebras are easily 
calculated from Eqs. (22), (23), and (24). Thus, from 

d· {Ill} 2r 1m 2,2, ••• ,2 = for 80(2r + 1), 

d· {Ill} 2r-1 1m "2,"2, ••• , ±"2 === for 80(2r), 

we obtain 

Similarly, from2 3 

for 80(N), 

(30a) 

(30b) 

(31) 

(32a) 

where q = 0, 1, ••• , r for N odd and q = 0, 1, ••• , r - 1 
for N even, and 

dim{l, .•. ,1, ± I} = i (2:) (32b) 

for 80(2r), the rank of CB!l) is found to be24 

rankCB~D = (2n: 1) . (33) 

We conclude by emphasizing the special physical case 
of the above results, the algebra 80(5). There we are 
considering in particular the DKP and Dirac algebras 
used in relativistic wave equations (Il = 1,2,3,4). From 
Eq. (23) one has that the dimensions of the representa­
tions are 

d5 (l1> 12 ) 

= ~(211 + 3)(212 + 1)[(11 + l)(Zl + 2) - 12(12 + 1)]. (34) 

As shown in Table II, the irreps with 11 :s 1 are the 
three irreps of the DKP algebra and the Dirac algebra 
for physical 4-space. That is, by considering the algebra 
80(5) one has a unifying principle13 connecting the Dirac 
and DKP relativistic wave equations. For higher spin 
(l1 > 1) some work has been done for the cases S = 3/2 
and 2.13,25 

APPENDIX 

We give the proofs of the statements (a)-(g) in the 
main text: 

(a) Choose k = 0 in Eq. (27). 

(b) Choose k = i in Eq. (27) to obtain a~ = t. 
Choose ,\ = v and Il ;0' v in Eq. (26) and use a~ = t to 

TABLE II: Irreducible representations of 80(5). 

Dimension Algebra 

DKP(trivial) 
Dirac 
DKP 
DKP 
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obtain a a a = - a 11/4 for Il ;0' v. Multiply this expres­
sion fro~/th~ right by a" to obtain a"a/J + al!a" = 0 for 
Il ;0' v. Thus,yuYv + Y"Y u = 26 u", where Yu = 2a/J' Con­
versely, it is easily demonstrated that Y/JY" + Y"Y/J = 
26/J" implies Eqs. (26) and (27) for a/J = y/2. 

(c) Choose k = 1 in Eq.(27) to obtain a 3 = a/J' 
Again choose ,\ = v and Il ;0' v in Eq. (26) to obtain 
a/J~ + a~al; - 2a"a/Ja" = ay(Il;o' v). Multiplication 
from the rignt by a" now yields a~a/Ja" = 2a"a a~(1l ;0' 

v). Multiplication of this result by all from the left and 
right, respectively, gives the relations a" a Ii a" = 
2a~a/Ja~ and a~a a~ = 2a"a/Ja" which require a"a/Ja" 
= 0 (Il ;0' v). Equation (26) for Il ;0' v now becomes a a 2 + 
a ~a/J = al!' Next choose Il ;0' v ;0' ,\ in Eq. (26), multi~li 
from the left by a", and use a "a /J a" = 0 (Il ;0' v) to obtain 
a~a/Ja", + a a",a/Ja" = 0 (Il ;0' v ;0' ,\), which yields 
a"a/Ja", + a~a",a/Ja" = 0 (Il;o' v ;0',\) upon multiplication 
from the left by a". This last result is now reduced to 
a "apa", + a",al!a" = 0 (Il;o' v ;0' ,\) upon USing the already 
established relations a"2a,,, = - a",a~ + a", (v ;0',\) and 
a"a/Ja" = O(Il;o' II). We have now proved that Eqs. (26) and 
(27) for k = 1 imply the four relations a~ = a/J' a/Ja"a/J 
= 0 (Il ;0' II), a/Ja~ + a~a/J = all (Il ;0' v), and a/la"a", + 
a",a"a/J = 0 (Il ;0' II ;0',\) which together comprise the 
statement of the DKP algebraic properties a/J a "a", + 
a",a"a = a jJ 6"", + a",6"/J' Conversely, using Similar 
meth~s, it may be demonstrated that these relations 
imply Eqs. (26) and (27). 

(d) For the proof we have already pointed out the 
one-to-one correspondence between the Hermitian mat­
rix irreps of 80(n + 1) and the operator algebra (26). 

. The subsidiary relation (27) simply means that we must 
now select only those irreps satisfying (27), and it 
follows from Eq. (25) that this will be the case if and 
only if the label If. satisfies Hi :s k and the set of repre­
sentation labels {IN} is comprised either of all integers 
or all half-integers according to k. 

(e) Each finite-dimensional representation of the 
Lie algebra so(n + 1) (n 2: 2) is completely reducible, 
which, in turn, implies that CBhki is a two-sided completely 
reducible ring. Since CB:/,> also has an identity, it 
follows 26 that CB~> is semisimple. 

(f) We use the fact that each irrep of a compact 
group is equivalent to a unitary irrep, and, hence each 
irrep of a basis of the Lie algebra 8o(n + 1) is equivalent 
to a Hermitian irrep. Accordingly, all the inequivalent 
finite-dimensional irreps of CB!kJ are obtained from those 
of so(n + 1). The expression for the rank of CBff'> now 
follows from the theorem of Frobenius and Schur27 
equating the number of independent elements to the sum 
of squares of the dimensions of the irreps. 

(g) This trace property is an immediate consequence 
of the fact that each a/J is equivalent (by a nonsingular 
transformation) to a component of an ordinary angular 
momentum matrix. Alternatively, the property follows 
directly from Eq. (26) upon taking the trace. 
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Zeroes of the partition function for the Ising model in the 
complex temperature plane 
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For special boundary conditions, the zeroes of the partition function of the square Ising model are 
shown to lie on Fisher's two circles in the complex exp( - 2f3J) plane. For some more general boundary 
conditions, the zeroes distribute asymptotically on these circles. 

In this note we study the zeroes in the temperature 
plane of the partition function of the square ISing model. 
It has been conjectured by Fisher, 1 that the zeroes dis­
tribute asymptotically on two circles in the exp(- 2{3J) 
plane, given by 

(1) 

Numerical investigations, in the case of periodic 
boundary conditions, by Abe and Katsura,2 support this 
conjecture. We confirm it here in the following sense: 

(a) For special boundary conditions the zeroes are 
proved to lie on (1), or, more conveniently, on the unit 
circle in the Sh2{3J plane. 

(b) With some other boundary conditions their 
density is shown to become asymptotically zero in the 
complement of the circles (1). 

The special boundary conditions in (a) are the follow­
ing (Fig. 1). 

(A) Periodic in the horizontal direction, along the upper 
border of the resulting cylinder (height M, circumference 
N) a band of fixed spins +, along the lower border a band 
of alternating spins (so N must be even). 

(B) Periodic in a diagonal direction, along the upper 
border of the cylinder a band of spins +, free along the 
lower border. 

In both cases the symmetry J -) - J (combined with 
spin reversal on the odd sublattice, and a reflection in 
case (A) is exact. This implies, that the partition func­
tion is an even polynomial in Sh2{3J (multiplied by 
Ch2{3J if both M and N are odd). 

Moreover, system B is exactly self-dual (i.e., it has 
high-temperature-low-temperature relations between 
the partition functions and between the even spin corre­
lation functions). In particular, the partition function is 
invariant up to a factor under the transformation 
Sh2{3 J -) Sh- 1 2{3 J . 

These two symmetries already indicate, that the 
zeroes might lie on the unit circle in the Sh2{3J plane. 
That this is indeed the case, follows from the exact ex­
pressions for the partition functions: 

QA(M, N) = 2MN IT IT [Ch22{3J - Sh2{3J(cosO. 
lSj""N/21""k""M J 

+ COSqJk)] (N even), (2) 

= 2MN 1""j""~N/2J lsQ""M[Ch22{3J - 2Sh2{3J cosiOj COSqJk] 

{
I, N even 

x ChM 2{3J, N odd. 
(3) 

The angles are defined as 

OJ = (2j - l)1f/N; CPk = k1f/(M + 1). (4) 
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Note, that the partition function of A also happens to 
have a self-dual form. However, the system A has not 
the full self-duality; the system A * dual to A is the 
following: 

(A *) Periodic in the horizontal direction, free along the 
upper border of the cylinder, along the lower border an 
extra imaginary magnetic field h = 1Ti/2f3. 

In precise terms (cf. Benetlin et al.3 for duality in con­
nection with boundary conditions): 

QA(M, N, (3) = 2- 1- M/ 2(Sh2{3J)MN+M/2QA* (M + 1, N, (3*); 

Sh2(3J Sh2(3*J = 1. (5) 

The usefulness of system A * lies in the fact, that its 
partition function has been computed before. Using the 
Pfaffian method, McCoy and Wu4 found the partition func­
tion for an arbitrary magnetic field h along the lower 
boundary. 

The crucial point in the calculation is the following. 
After the use of the anticyclicity of the Pfaffian (deter­
minant), in the periodic direction, the partition function 
reduces to a product of N Toeplitz block determinants, 
parametrized by the angle OJ' Eq. (4). Each of them leads 
by a recursion procedure to a quantity of the form 

(6) 

with a 2 x 2 "transfer" matrix L. The vectors 1J1 12 re­
flect the boundary conditions [cf. Ref. 4, Eqs. (3.12)­
(3.13) ]. 

For the imaginary boundary field under consideration 
the expression (6) becomes proportional to 

(7) 

for all 0, where;\.± are the eigenvalues of L [take Chf3h = 
0, z Chf3h = i in Ref. 4, Eq. (3.26)]. The result (7) allows 
one to write the partition function as a double product. 

The partition function for case B is found straight­
forwardly along the same lines. Again the boundary con­
ditions are such, that the computation results in expres­
sions of the form (7). 

Let us ~inally consider the case of periodic boundary 
conditions in one direction and an arbitrary homogeneous 
magnetic field h along the lower boundary. 4 It is more 
convenient then to take exp(- 2(3J) as a variable, because 
the partition function is no longer a polynomial in Sh2{3 J • 

+ + + + 

+ - + -

FIG.1. The special boundary conditions A (left) and B (right). For 
both, M x N = 5 x 4 is pictured. 
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The computation leads to an expression of the form 
[Ref. 4, Eq. (3. 21)] 

instead of Eq. (7). 

(8) 

It is convenient to cut the exp(- 2{3J) plane along the 
arcs on the circles (1), given by 

Then \1:(0) and a±(O) are analytic functions in the cut 
plane, and 

By RoucM's theorem, the zeroes of (8) distribute asym­
ptotically (M ~ 00) on the curves 

a.(O) = 0, 

A.,(O) = AjO)eiq>. 

(9) 

(10) 

Equation (10) gives the above-mentioned cuts on the 
circles (1), and Eq. (9) leads to at most 4 zeroes for each 
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0; so the density of such zeroes tends to 0 when M ~ 00. 
The density of zeroes of the partition function is there­
fore completely determined by Eq. (10). 

It appears very likely, that the locus of zeroes for the 
other soluble two-dimensional Ising models is given by 
the cut, which appears naturally in the analytiC expres­
sion for the free energy denSity. It would also be inter­
esting to study the locus of zeroes of other self-dual 
models, like the Ashkin-Teller-Potts model. 
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The quantum corrections to the phase space distribution function are obtained for general velocity 
dependent interactions. It is noted that a study of the thermodynamic properties of bulk nuclear 
matter may settle the question of velocity dependence of nucleon-nucleon interaction. 

Wigner distribution function has been successfully ap­
plied by several authors,1-5 for calculating the quantum 
corrections to thermodynamic functions. These investi­
gations have been carried out using velocity-independent 
interactions. The purpose of the present note is to apply 
this method to a general Hamiltonian in the first instance, 
and then to the velocity-dependent interaction of the type 
introduced by Green. 6 

The temperature dependence of an appropriate gen­
eralized phase space distribution function (e.g., the Wig­
ner distribution function) is usually taken as the starting 
point for such an investigation. This consists of a 
straightforward replacement of the products of quantum 
mechanical operators by the corresponding products of 
the c-number functions on which they are mapped. The 
method leads to corrections which in the Wigner-Weyl 
correspondence coincide with those obtained by Oppen­
heim and Ross in the limit of velocity independence. In 
conclusion it is pointed out that the thermodynamic pro­
perties of bulk nuclear matter can help to decide whether 
nuclear forces are really velocity dependent. 

The possibility that the nucleon-nucleon interaction 
might be velocity dependent has been widely investi­
gated. 6 - 1o It is well known that a nonlocal potential is 
equivalent to a velocity-dependent one. still, the role 
played by the velocity dependence of the potential is not 
very clear, and it is interesting to study the thermo­
dynamics of a system with velocity-dependent inter­
actions. 

The form of velocity-dependent interaction usually 
considered is 

pi + P~ 
H(x1,X2,Pl'P2) =f(lx1 -x2)1) 2m 

+V(lx1 -x2 i). (1) 

Green has shown that it is possible to fit the low­
energy data with 

f(lx 1 -x2 1) = C exp(-alx1 -x212). 

The calculations that follow could be explicitly carried 
out for Green's potential as a particular case. 

If the two-body Hamiltonian is taken to be 

pi p~ pi + p~ 
H(x1,X2,P1,P2) =2m + 2m + CP(x1,x2) 2m 

+ U(Xl' x2 ), (2) 

then the N -particle Hamiltonian has the form 
1 N 

H(x1," ',xN>Pl'" ',PN) = N -1 .6 g(Xj,x) 
.<)=1 

p2 + p2 
i2m j + V(R), (3) 
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where 

g(x;, x) = 1 + (N - 1)cp(xj' Xj) = g(xj , Xi)' 

V(R) == ~. U(x;, Xl)' 
Z<J 

When g(x"xj ) = 1 we have the usual velocity-indepen­
dent Hamiltonian. The- quantum Hamiltonian that cor­
responds to (3) in the Weyl ordering will be as given in 
Eq. (4). [For any classical observable g(p, q), the oper­
ator g corresponding to it in the Weyl ordering is given 
by 

It may also be noted that Green uses the quantum Ham­
iItonian in the symmetric ordering instead of the Weyl 
ordering that we have chosen.] 

To study the thermodynamic properties of the system, 
we start with the Bloch equation for the temperature 
dependence of the canonical ensemble unnormalized 
density operator: 

op I AA ~ 
a{3::::: - z(pH + tip). (5) 

U sing the definition of the Wigner distribution function, 

fw(R,P) = (n~rN J e(2j/lIJ>'Yp(R -Y,R + Y)dY, (6) 

where R, P, and Y are 3N-dimensional vectors, we have 

o~w == _ ~(n-~ /N J e (2i/II)1>. Y[H(R - Y) + H(R + Y) 

x P(R - Y,R + Y)dY. (7) 

Substitution of the Hamiltonian (4) in (7) leads to 

ofw 
atf = (A + B + C + 6)f w' 

with 

6 f w = - cos[(Ji/2) 6 vp .• Vx }V(R)f w(R, P), 
j J J 

where V x. operates only on V and 
1 

Afw= 12 ("; -1) L) {(Ctj + qj)[V~. + V~ -(4/lf2) 
m ;<j '1 

(8) 

X(p~ + Py)] + (4i/If)(ClJ -Cij)(Pi ,v
rj 

+ Pj' Vr)}fw, 
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n2 

Bfw= 12m(N 

+ (Vrj - ~ Pj)' [Cij(Vrj - ~ Pi)] 
+ (V r i + ~ Pi)' [ Ci j (Vr i + ~ Pi)] 

+ (Vrj + ~p~. [qj(Vrj + ~Pi)]ffw, 
CF = ,. '" V2 + V2 _...! (' 2 + 2) ""2 ~ [ ~ Jw 12m(N-1)f;0 ri r, 1f2 Pi PJ 

X (Cij + Clj) + 4~[(Pi' Vrt + Pj ' Vrj) 

X (Cij - Cij)J f w' 

where 

cti = g(r; ± i: vpi,rj ± i: vpj). 

In the velocity-independent case g == 1, we naturally 
get the Oppenheim and Ross equation 

af w N (1f2 pJ\ 
ajf= RI 8m V~j-2iii/fw-afw' (9) 

In calculating the quantum corrections. Oppenheim and 
Ross expand f w as a power series in n and substitute in 
Eq. (9). Such a calculation would be very difficult to per­
form directly for Eq. (S). 

We will therefore directly transcribe the Bloch equa­
tion in phase space by replacing p by f w' H by the classi­
cal Hamiltonian, and the operator products of p and H 
by the homomorphiC phase space products of correspond­
ing quantities. The phase space product A X B of two 
classical functions A(R, P) and B(R, P) is defined as A x 
B, with 

For the one-particle case, this is given by 

A(r,p) xB(r,p) 

== exp[(ifi/2)(V r • Vp - Vp . V r n 
1 2 1 2 

x A(r 1 ,PI)B(r2,P2)! r "r =r' 
1 2 

P1=P2=P 

Thus the Bloch equation becomes 

afw 1 
ajf = -"2.(1 w x H + H x f w)' 

Expanding f w in powers of h, we have 

I II) == I cl(1 + nqJl + n2 qJ2 + ... ), 

where 

fel = e-13H• 

(10) 

(11) 

(12) 

Substituting (12) in (10) and equating the coeffiCients 
of like powers of h, we have 

aIel 
ajf= -HIcl (13) 

(14) 
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The usual requirement that we obtain the correct 
high -temperature limit 

f w ~ fel f3 ~ 0, 

shows that qJ 1 = 0 and therefore all qJ2n+ 1 vanish 
identically. 

Thus we have 

68 

I w == f ez(1 + n2Xl + n4X2 + .. ,), (15) 

for any general Hamiltonian. Substituting (15) in (11), we 
get [apart from (13)} 

After a straightforward calculation, we get 

- 2(V x V H)' (V x V e- tlII) 
Pk rl rk PI 

- 8f1 ~ 6 {v r • [(V r e-8/lO)· V P )V P H] 
u k I kl 11 k I 

- 2V r [(V P e-/lR(l)· V p)Vr Hn I r "r r =r • 
kl 11 I kl k 11 I 

Pk:t =PkPI l =PI 

(17) 

In partIcular for the Hamiltonian (3) 

1 ~ p~ +pJ 
H=N-1' ,g(rj,rj ) 2 + VCR), - ,<] m 

we can integrate Eq.(17) for Xl with the initial condi­
tion that Xl = 0 when f3 = 0 (correct high-temperature 
limit), and obtain 

+ P k X (Vr GI(R) x PI)] 
k 

+ [P k X V r G ,,(R)}' [V r G/(R) x pzl} 
I k 

+ P12
3 ~6 {GZ(R)[Pk X Vr G,,(R)]' (Vr H x PI) 

k I I k 

- ~: ~ '? {G k(R) Gz(R)(p k x PI)' (V r k X V riB) 

+ GI(R)G k(R)[(p k' V r )V r H] . PI + /) klG JR)(V r kH)2 
k I 

+Pkx(Vr XVrIl)'PI}' (IS) 
k I 



                                                                                                                                    

69 M. D. Srinivas and Y. S. Prahalad: Statistical mechanics 

where 
1 

G k(R) = m(N _ 1) Y [g(rj,r;) - g(r k' r ;)]. 

When we take g = 1 the usual corrections for velo­
city-independent potentials are obtained. Knowing the 
correction for the first order, the corrections to higher 
orders in Ii could be computed using the recurrence re­
lations 

Knowing the first-order correction for the Wigner dis­
tribution function the first nonvanishing corrections to 
all the phase space distribution functions corresponding 
to different operator orderings can be calculated. 

Knowning the quantum corrections to the distribution 
function, the quantum corrections to the partition function 
can immediately be calculated. The partition function 
Z is given by 

Z = jfw(rl' r 2 • "r N'P l •·• PN)dr l dr2··, dPN, 

where f w(r 1· •• PN ) is the unnormalized distribution 
function, given by (6). We immediately get an expansion 
for Z in powers of h2 • 

Z = Zez{1 + li2Pl + 1f4P2 + ... ), 
where 

Z cl = f fcl(r l · . ·PN)drl· .. dPN, 

P s = f Xsfeldrl" ·dpN= <XS>CI' 

For our case, the first correction to the partition 
function will be the classical ensemble average of Xl 
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[given in (18)]. But these calculations can be explicitly 
carried out only after the functions G JR) are known 
i.e., when a specifiC form for the function g(r j, r j) is 
chosen. 

As has been pointed out, the actual relevance of velo­
city-dependent potentials for nucleon-nucleon inter­
action is not very clear, though they have been widely 
employed in the analysis of N-N scattering, optical and 
shell model calculations, etc. One also obtains a velo­
city-dependent potential from some meson field theore­
tic calculations. In this context, the thermodynamic 
properties of bulk nuclear matter may throw some light 
on this problem. The results above could be used to 
check the relevance of specific velocity dependent 
potentials such as the one given by Green. 
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many improvements. 
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Some general assumptions based on the physical properties of elementary and of composite 
quantized systems lead in a natural way to general expressions for the position and spin operators 
of massive particles. All previously proposed position and spin operators, defined in the enveloping 
algebra of the Poincare group, appear as special cases. By algebraic arguments a general local position 
operator is obtained which is proved to coincide under special conditions with the Pryce-Newton­
Wigner position operator. 

I. INTRODUCTION 

During the past 25 years several types of position 
operators have been proposed as candidates for the ob­
servables whose eigenvalues are the measured values 
of the position of some elementary particle or the cen­
ter of mass of a composite quantized system. These 
studies recently acquired special emphasis due to the 
increased interest in representing the complicated com­
posite nature of hadrons (experimentally manifesting 
itself in a partonlike structure, Reggeized or dual 
behaviour) by means of dynamical models with unspeci­
fied constituents. 

In principle, there are two distinct approaches pos­
sible. One may consider the description of the quantized 
system in the Poincar~ framework and seek to identify 
the covariant position operator in the enveloping 
alge bra. 1-7 

Alternatively, one may consider dynamical groups 
that are larger than the Poincar~ group and which con­
tain a covariant position operator in the Lie algebra. 8 - 10 

In this paper we shall consider only the first approach. 

The starting point in most of the mentioned papers 
has been the investigation of the physical properties 
of the position and spin observables or their commu­
tation relations with other observables. A systematic 
study of these pOSition operators reveals that all of them 
correspond to the same algebraic structure and are 
closely related to the spin operator. It is the aim of 
our work to derive from the definition of the total angu­
lar momentum-as it was proposed by Synge in the 
classical sense-a general expression for the spin and 
position operator (Sec. II). Subsequently, we will show 
that under certain conditions the specific position and 
spin operators are special cases of the general ex­
pressions found by us (Sec. III). 

Our systematic approach contains the following 
assumptions. 

(i) In order to construct the position and spin operators, 
Q ~ and 5 ~v, respectively, we have at our disposal only 
the generators J ~v and P ~ of the Poincar~ group. 

(ii) Q ~ and 5 ~v are Hermitian operators acting on state 
vectors which belong to some unitary representation of 
the Poincar~ group. 

(iii) Q~ and S~vare related by the expression 

(1) 

which at the same time is the defining equation for both 
operators in analogy to the classical picture. 11 

(iv) Some properties of covariance, locality, and tensor-
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ial character are not shared by all Q ~ and 5 ~u and 
therefore are studied in the special cases. 

If the representation of the Poincar~ group is realized 
in a field theory, assumption (ii) does not imply that the 
field system carries an infinite dimensional representa­
tion of 5L(2, C); fields with a finite number of com­
ponents [spanning a nonunitary representation of SL(2,C)] 
are permitted. 

Assumption (iii) is the translation to the language of 
operators of the conservation of total angular momen­
tum. We know from the canonical formalism in field 
theory that the invariance of the Lagrangian under trans­
lations and Lorentz transformations leads to the con­
servation of energy-momentum and of the total angular 
momentum, respectively, which are isomorphic to the 
generators P Jl and J !JU' The same is true in the case 
of first quantization where the four -momentum and the 
total angular momentum satisfy the same commutation 
relations as P!J and J !JU' respectively. Therefore in 
Eq.(1),J~v stands for the total angular momentum 
operator Q "P u - Q uP for the external part or orbital 
angular momentum operator, and S~u for the internal 
part or spin operator. 

In this paper we adopt natural units (Ii = c = 1) and the 
metric tensor is goo = - gkk= 1,g}Ju = 0 for fJ. = II. The 
scalar product of two four-vectors aJlb!J is denoted by 
a.b. 

II. GENERAL EXPRESSIONS FOR THE POSITION 
AND SPIN OPERATORS 

The most general operator Q!J satisfying assump­
tions (i -iii) is found in the following way. Any anti­
symmetric second-rank tensor that belongs to the 
enveloping algebra of the Poincar~ group can be identi­
cally rewritten in the form 12 

Lpu= (Lp),P>"P u - L v )'p>"Pp)/P2 

+ (Lt>..P>"P u - Lt).p)..p~)*/P2. (2) 

(This can be proved by substituting in the second term 
on the right the explicit expression for the dual tensor 
and using the properties of the Levi-Civita symbols). 
If we take for L pu the external angular momentum 
given by (1), 

then, since (Q pP u - Q uP !J)*pv = 0, we obtain from (2) 
the relation 
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Comparison of (3a) and (3b) gives 

Q" == (J"v - 5",)PA!P2 + AP/p2, (4) 

where A is an arbitrary scalar operator. For massive 
particles we substitute p2 == M2. (Obviously this equa­
tion cannot be used for massless particles.) 

Since J ~v and A in general do not commute with P~, 
we must symmetrize (4): 

This is the most general expression for the pOSition 
operator satisfying conditions (i -iii). 

In (5) the existence of 5 JlV is presupposed, and so one 
needs an expression for 5 JlV which does not contain Q f 
explicitly. In order to eliminate Q~ in 5jlV given by (I), 
we take the dual tensor on both sides and contract with 
pv: 

JtvPv == 5tvPv. (6) 

A particular solution of (6) is obtained with the help 
of the identity (2) for L"v == J "v: 

Jjlv == (Y jlP v - Y vP ,,)/P2 + (W~P v - WvP~)*/P2, (7) 

where Y jl == J pf.P\ (Shirokov tensor), 

W~ == Jt,P\ (Pauli-Lubanski tensor). 

Now the spin operator 

5~v == (W"P v - WvP,,)*/P2 (8) 

is a solution of (6) as can be shown by taking the dual 
tensor of (8) and contracting with pv. Therefore, the 
most general solution of (6) will be 

5"v == 5~v + T"v' 
with 

(9) 

One way to express the general solution of (6) is to 
parametrize 5"v by choosing an arbitrary timelike four­
vector XV such that 

(10) 

[The requirement x2 > 0 comes from the condition that 
P.x in (12) and (15) cannot be zero, which is true if and 
only if x2 > 0 and p2 > 0.] 

In both constraints (6) and (10) for the spin operator 
5 "V' the first equation is implied by the last three. 
Therefore, we are left with six independent equations 
which fix completely the components of the antisymmet­
ric tensor 5"v' The additional vector XV will help us 
to express Q" and 5 "V independently. Contracting (4) 
with x P and using (10) we get 

Q.x == Y.x/M2 + AP.x/2M2• (11) 

Contracting also (1) with XV and using (10) and (11), 
we obtain a general expression for Q" independent of 
5 "V, which after symmetrization reads 

where all scalar operators have been absorbed in A. 
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5"v == Jjlv - {JjlA' x'P j2P.x} + {J VA' XAP /2P.x}. (13) 

We still want an expression for the spin operator of 
the form SIlV == 5Zv + T "V, with 5~v given by (8). Com­
parison of (13) with the identity 

Jjl" == {J "A' xAp j2P.x} - {J VA' x>-'P ,,/2P.x} 

+ (W"x v - Wvxp)*/P.x (14) 

[which can be proved in the same way as (2)], gives 

5"v == (Wjlx" - W"x,,)*/P.x. 

Substituting in this expression W" == Jt>-.P>-' == 5zr P A 

given by (6), we obtain 

U Sing the properties of the Levi -Civita: antisym­
metric tensor, this becomes 

s,," == 5~" - 5~>-.x>-'P ,,/P.x + 5~>-.XAP jl/P .x. (15) 

Equations (12) and (15) are the most general expres­
sions for the position and spin operators, but they 
depend on the time like vector xjl, which may be taken 
from the enveloping algebra of the Poincare group or 
from without. In the second case we have a violation of 
covariance, which however will be proved necessary 
in order to satisfy the requirement of locality (Sec. III). 

In order to classify the particular position operators 
we will follow the classification used by Fleming in 
Ref. 6. 

III. SPECIAL CASES 

"The center of inertia" 

As we mentioned in the Introduction, the particular 
position and spin operators are speCial cases of the 
general expressions (5) and (15). Choosing XV == pv in 
(10), we have 

(16) 

which was postulated by Syngell in the classical sense, 
and is interpreted now in the quantum mechanical 
framework. Substituting XV == pv in (15) and using 
SZvPv == 0, we obtain 

for the spin operator, and substituting (16) in (5) we 
obtain 

for the position operator. 

(17) 

(18) 

Since A is still undefined, we can impose some addi­
tional conditions. 

(i) The requirement Qo == t, where t is the time vari­
able, is satisfied if A = (tM2 - ya)/po, so that 

Q" == Y/M2 + tP,,/Pa -{Yo,P/2M2PO}' 

This is the "center" defined by Pryce 13 in case (d) 
and corresponds to the "center of mass" (to be defined 
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later) in the rest frame, and tl}en transformed to any 
frame by a Lorentz transformation. 

(ii) The condition Q.P = 0 is satisfied if A = 0, hence 

Q~ = Y/M2. 

This is called the "center" by Chakrabarti14 and 
Bacry.15 

(iii) The condition Q.n = 0, n being a timelike unit 
vector is satisfied if A = - Y. n/ P. n, and we have 

Q~ = Y /M2 - {y.n, P/2M2P.n}, 

as proposed by Bacry.16 

(iv) The requirement Qo = t, when P = 0, gives A = 
Mt,and so 

Qk= Jko/M. 

This is the "center of inertia" defined by Fleming17 
as the operator which describes the pOint in space­
time occupied by the "center of mass" in the rest 
system. This center transformed to an arbitrary frame 
gives the expression (18). 

From (17) and (18) it can be proved that all position 
operators (i-iv) transform as four-vector operators of 
the Poincar~ group, and the corresponding spin opera­
tors transform as antisymmetric second-rank tensor 
operators. Expressions (17) and (18) are, therefore, 
covariant and independent of the frame of reference. 
The last property (that of being independent of the 
frame of description), is ascribed by Fleming to "point" 
operators. But, unfortunately, the "center of inertia" 
operators (i-iv) do not have self-commuting compo­
nents, as can be checked, and thus they are not local 
operators. 

"The center of mass" 

Taking XV = nV in (10), nV being a timelike unit 
vector representing the hyperplane from where the 
system is observed, we have 

S~vnv = 0, (19) 

and substituting XV = nV in (12) and (15) we get 

(20) 

(21) 

Given n\ the expression (21) for the spin operator is 
completely determined, but in (20) we will have an ar­
bitrary scalar operator. As before, special conditions 
remove this arbitrariness. 

(i) Qo = t, t being the time coordinate, gives 

Q~ = {I~A,n)";2P.nJ -{JOA,nAP~/PoP.n}+ tP/Po' 

This is the "center of mass" proposed by Pryce,18 the 
components of which are the mean values of the co­
ordinates for the constituents of the physical system 
weighted with their dynamical masses (energies). 

(U) Q ~P~ = 0 gives 

Q~ = {I~A,nV2P.n} + {Y.n,P~/2M2P.n}. 

This is called "the pseudo-center" by Chakrabarti19 
because it is supposed to coincide with the "center" in 
the rest system. 
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Q ~ = {I ~A' nV2P.n}. 

(iv) Qo = t,for n = (1,0,0,0),gives 

Q k = {J kG' p(,t} + tp/Po' 
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This is the "center of mass" derived by Fleming,20 for 
a composite system with the help of the total angular 
momentum and energy-momentum tensors. 

Obviously, expressions (20) and (21) depend on the 
particular hyperplane with the representative unit 
vector n\ and they do not transform as vector opera­
tors or as antisymmetric tensor operators, respec­
tively.21 Furthermore, the "center of mass" operators 
(i-iv) are not local operators because their compo­
nents do not commute among themselves.21 

The local position operator 

The particular choices of XV made above do not lead 
to a local operator. In order to find such an operator, 
whose components satisfy 

(22) 

we must find other values for XV. Fleming22 has proved 
that (22) is true if and only if 

[S ~v' Spo] = i(g vpS~o - g ~S va - g Il<JSpV + g vaSp~)' (23) 

The most general form of XA is of the form 

xA=anA+bP\ (24) 

where a, b are arbitrary constants and n A is a timelike 
unit vector. Inserting (15) into (23) [with x A given by (24)] 
and using the properties 

[S~V,nA] = [S~V,PA] = [SZv,(P·n)-l] = 0, 

we find 
. ~ x vP p + x pP V x2 P uP p) 

[S~v, Spa] = l gvP - + SIl<J 
P.x (P.x)2 

+ antisymmetrizing terms. (25) 

Condition (23) is satisfied if and only if 

x2 P VPp 

(P.x)2 

XVPp + xpPv --'---'----- = 0 
P.x 

for all values of 1/ and p. Multiplying both sides in the 
last expression by (P.x)2 and substituting Xv from (24), 
we get 

(a2 -b2M2)P vP p -a(aP.n + bM2) (nvPp + npPv) = O. 
(26) 

For arbitrary P V and Pi' this equation has a nontrivial 
solution (i.e., different from a = b = 0) if 

a2 - b2M2 = 0 and aP.n + bM2 = 0 

or if 

(27a) 

(27b) 

The condition a2 - b2M2 = 0 gives b = ± aiM. For 
positive energy state functions, onto which the position 
operator is applied, the minus sign is excluded by the 
following argument: 

We have shown that x A = an A + bP A is a timelike 
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four -vector, Inserting the two values of b in this 
vector, we obtain 

x).. = a(n).. ± PjM); 
hence 

x2 = 2a2 (1 ± P.nlM}. (28) 

But P.n is the time component of the four-momentum in 
the new frame, n).. being its characteristic vector. Since, 
for positive energy states, 

Po = + .jM2 + p'2 ~ M, (29) 

it follows from (28) that the minus sign would lead to a 
spacelike vector x2 < O. 

Inserting the value of b = aiM into the second con­
dition of (27a), we obtain P.n + M = 0, which is im­
possible for positive energy state functions. Therefore 
we are left with the second choice, Eq. (27b). The first 
condition gives, as before, b = aiM, and the second con­
dition cannot be satisfied simultaneously for all values 
of II and p. [The solution n = (0,0,0,0) is impossible 
because n is a unit vector.] The maximal set of equa­
tions (26) which satisfy the conditions (27b) is obtained 
if we restrict ourselves to the consideration of the 
spatial components p, II = 1,2,3 and choose n = 
(1,0,0,0). 

Inserting x).. = a(n).. + P/M) into (12) and (15),divid­
ing by a, and using 

(S~3,sgl'S~2) = (WoP -WPo)IM2 =S, 
(S81' S82' S83) = (W x P)/M2, 

(J23 , J 3 1' J 12) =J, 
(J01'J02,J03) =N, 

we obtain 

Q = - NM-1 + tH(J x P - P x J),M-1(PO + Mt1} 

+ t{A, P(Po + Mt 1}, (30) 

S = (WoP - WPO)M-2 + (W X P) X P(Po + M)-2M-2. 
(31) 

Expression (30) gives the local pOSition operator, and 
(31) is the corresponding spin operator satisfying the 
standard commutation relations 

[Sj' Sk] = if}klSI' 

Again (30) contains some arbitrary scalar operator A. 
If we take A = N.p(MPotl, we obtain from (12) and (30) 

Qo = 0, 

MQ=-N + Ht(J xp -P xJ),(Po + Mt1} 

+ HN.P,PP(l(Po + M)-1}, (32) 

which coincides with the local "center of mass" pro­
posed by Pryce,23 provided we symmetrize it and use 
our convention for the generators J and N. Further­
more,Newton and Wigner24 derived a position operator 
from physical considerations of localized elementary 
particle states which for spin t was shown to coincide 
with Pryce's expression. In Appendix A we sketch a 
proof which shows the equality of the Pryce and of the 
Newton-Wigner position operator for arbitrary spin. 

It can be checked25 that the local position operator 
(32) satisfies the Heisenberg commutation relations 
and commutes with the spin operator (31). The spatial 
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parts of these two operators transform as a vector and 
as a second-rank tensor, respectively ,26 

IV. CONCLUDING REMARKS 

The initial assumption of Eq. (1) was based principally 
on two facts: (a) it is the natural covariant generaliza­
tion of the total angular momentum J jlV' (b) the Lie 
algebra generated by the J jlV [which as defined through 
(1), belongs to the enveloping algebra of the Poincare 
group] and by the linear momentum P v is isomorphic 
to the Lie algebra of the Poincare group. These as­
sumptions have been proven to be fruitful for the 
classification of all proposed pOSition and spin opera­
tors defined in the enveloping algebra of the Poincare 
group. At the same time, we are led to a local. position 
operator from pure algebraic conSiderations. 

Similar assumptions and methods can be applied to 
groups larger than the Poincare group, for example, to 
the inhomogenous deSitter group27 or the conformal 
group. In that case, viewed from the restriction to the 
Poincare framework, the locality condition is not neces­
sarily in contradiction with the covariance and frame­
independence requirements. 
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APPENDIX A: EQUIVALENCE OF THE PRYCE AND 
NEWTON-WIGNER POSITION OPERATORS FOR 
ARBITRARY SPIN 

The N - W pOSition operator can be written28 

2s 22sp2s+1/2 p;1/2 
- E n !.(1 + 0\ 0 X __ 0'---_ 

q- ct=1
11 Yex! (Po+M)S (Po+M)s 

2s 
x Dl t(1 + yB)E, (AI) 

where n~~1 t(1 + y~) has been inserted before the 
operator E on the right because it is a projection opera­
tor. We take the expectation value (lP,q~),with respect 
to some state function. USing the commutation rela-
tion [po' X] = zp IPo, we can commute pr1/2 to the 
right side of X, and we will obtain a term proportional 
to (lP, PlP) and another term of the form 

(( 2Po r ti t(1 + yO)ElP,X ( 2Po r 
Po + M ct=1 ct X 2;:;1: y~)ElP\' (A2) 

a-I 'j 
where we have used the Hermitian property of E and 
(1 + yO). ExpreSSion (A2) can be decomposed into a 
sum of 28 terms, 
2s 
l: (F1F2···F2slP,FIF2 ... F -IF +1 ••• F2sXFctlP), 
a=1 ct ct (A3) 
where 

( 
2P \ 1/2 

Fa;: Po +°lvf) t(l + y~)Ect' 
The operator E a acting on lP gives the positive energy 

part, and Fa' in this case, is equivalent to the unitary 
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transformation used by Foldy and Wouthuysen29 applied 
to the positive energy wavefunctions, namely 

·s (2P) 1/2 
F 0.1/1 :::: e' al/l+:::: Po +OM t(1 + Y<&) 1/1.-

So we can write (A3) in the form 

~ ( iSl iS2 iS2S ,I, iSl iSa- l iSa+l iS2S X iSa",) 
L.J e e .•• e '1'+, e ••• e e ••. e e 'i"+' 
a;1 

But the Foldy-Wouthuysen transformations acting on 
the operator X give the Pryce position operator q P for 
spin-t particles,30 

iyOa iyO(a.P)P + (0' X P) Ip I 
e-iSXe iS :::: X + -- - :::: qP. (A4) 

2Po 2Po(Po + M) Ip I 
Since e iS is a unitary operator, (A3) simplifies to the 

form 
28 _~ ~ 
~1010···0(I/I.,e aXe al/l+)0"'01 
0.;1 

2s 
:::: ~ 1 0 1 0 .. , 0 (1/1 +> q fa) 1/1 +) 0 ... 0 1. (A5) 

a;1 

Now remembering that in (A4) a and (1 are the gener­
ators of the Lorentz group in the ~ spin representation, 
we can substitute (A4) into (A5) and we will obtain in­
stead of a and 0' the generators [Ok and Iij for the repre­
sentation of spin s, in the form given by Bargmann and 
Wigner,31 

2s 

I~V:::: ~ 1 0 10 .•. 0 l.iy~yP 0 ... 0 1. 
a;1 2 a a. 

But in this way (A5) becomes precisely the expecta­
tion value of Pryce's position operator Q in any arbit­
rary representation of spin s, as defined in (32). Since 
however, we disregarded in the above argument the term 
proportional to (0./1, P '>/I), the Newton-Wigner and the 
Pryce operators may differ by an expreSSion that cor­
responds to the last term in our Eq.(30). 

APPENDIX B: ON THE UNIQUENESS OF THE 
NEWTON-WIGNER POSITION OPERATOR 

The locality condition (22), when applied to the general 
expression (4), does not lead to a unique position opera­
tor. As we saw in Appendix A, both the Pryce and the 
Newton-Wigner operators satisfy the locality condition, 
yet they differ by a term proportional to P. 

Using a different approach, Weidlich and Mitra,32 as 
well as Galind033 have shown that hermiticity, con­
jugacy to P, locality, correct transformation behavior 
under rotations, space and time reflections do not 
uniquely determine the position operator. In fact, all 
these conditions are satisfied by 

Q:::: BQ(O)B-1, (B1) 

where Q(O) is the Newton-Wigner position operator and 
B is a unitary operator that commutes with the repre­
sentation of the Euclidean group E 2 • 

It is not difficult to show that the position operator 
given by (B1) is a special case of our general expres­
sion (4). Indeed, as we proved in Appendix A, the Q (0) 
satisfies (32) and therefore also the spatial part of Eq. (1), 

J :::: Q (0) x P + S, (B2) 

is satisfied. If we apply the unitary transformation B 
onto Eq. (B2), then, using Eq. (B1) and the fact that (by 
construction) B commutes34 with J, P, and S, we get 

J:::: Q x P + S. (B3) 

Furthermore,Q obviously satisfies the locality condi­
tion (22). Since the most general solution satisfying (1) 
and (22) is given by (30), it is now clear that the position 
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operator (B1) is a special case of our most general solu­
tion. To make (30) equivalent to (B1), it is necessary to 
demand correct behaVior under parity 11 and time 
reversal e. It is easy to show35 that the conditions 

nQn-1 :::: -Q and eQe- 1 :::: Q 

imply 

nAn-1 = A and eAe- 1 = - A, 

respectively, for the arbitrary scalar operator A in (30). 
But even these additional conditions do not completely 
fix the position operator (30). As Galind033 has shown, 
uniqueness of the position operator (B1) is obtained by 
imposing also a suitable regularity condition on its 
eigenfunctions. It turns out that the regularity condition 
invoked by Newton and Wigner36 renders (B1) unique 
and indeed leads preCisely to the Newton-Wigner 
pOSition operator. 

Note added in proof: We recently became aware of the 
excellent review article by A. J. K3J.nay [Studies in the 
Foundations, Methodology and Philosophy of Science, 
(Springer, New York, 1971), Vol. 4, p. 93] which discus­
ses the various approaches to the localization problem 
with great clarity. 
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A method is presented for solving initial and boundary value problems for the energy dependent and 
one speed neutron transport equations. It consists in constructing an asymptotic expansion of the 
neutron density l/J(r, v, r) with respect to a small parameter E, which is the ratio of a typical mean 
free path of a neutron to a typical dimension of the domain under consideration. The density l/J is 
expressed as the sum of an interior part l/Ji, a boundary layer part l/Jb, and an initial layer part l/Jo. 
Then l/Ji is sought as a power series in E, while l/Jb decays exponentially with distance from a 
boundary or interface at a rate proportional to E- 1. Similarly l/Jo decays at a rate proportional to E-

1 

with time after the initial time. For a near critical reactor, the leading term in l/Ji is determined by a 
diffusion equation. The leading term in l/Jb is determined by a half-space problem with a plane 
boundary. The initial and boundary conditions for the diffusion equation are obtained by requiring 
l/Jo and l/Jb to decay away from the initial instant and from the boundary, respectively. The results 
are illustrated by specializing them to the one speed case. The method may make it possible to treat 
more realistic and more complex problems than can be handled by other methods. 

1. INTRODUCTION 
Neutron transport theory concerns the determination 

of I/I(r, v, T), the denSity of neutrons at r with velocity v 
at time T. The major difficulty of the theory is that of 
solving initial and boundary value problems for the 
transport equation which 1/1 satisfies. As a consequence, 
only relatively simple problems have been solved. 
Therefore we shall present a new method for solving the 
energy-dependent and one-speed transport equations 
which may make it possible to treat more complex, and 
therefore more realistiC, problems. The method is that 
of constructing an asymptotic expansion of 1/1 with 
respect to a small parameter £. The parameter £ is the 
ratio of a typical mean free path of a neutron in the 
domain D under consideration to a typical dimension of 
D. This method was used by Matkowsky1 and Habetler 
and Matkowsky2 to treat the one-speed case of a slab 
with isotropic scattering and nonconstant coefficients. 

To find 1/1 we write it as the sum of four parts; an 
interior part 1/1 i , a boundary layer part 1/1 b , an initial 
layer part 1/10, and an initial-boundary layer part 1/10 b: 

(1. 1) 

We shall see that I/Ib and 1/10 decay exponentially with 
distance away from a boundary or interface and with 
time after the initial time, respectively. The decay rate 
is rapid, being proportional to £-1. Therefore 1/Ib be­
comes negligible beyond a few mean free paths from a 
boundary or interface and 1/10 becomes negligible after 
the time a neutron requires to travel a few mean free 
paths. On the other hand, 1/1 i is appreCiable throughout 
D, when D is a near critical reactor, while I/Ii is appreci­
able only in the source region, if any, when D is a sub­
critical reactor. Furthermore in both cases 1/1 i has an 
asymptotic expansion in powers of £, so it is greater 
than 1/Ib + 1/10 outside the initial and boundary layers. 
The part 1/I0b is important initially near the boundary, 
and decays exponentially both with time and with dis­
tance from the boundary. 

The determination of the leading term in the expansion 
of 1/1 i in the near critical case leads to a diffusion equa­
tion. The initial and boundary conditions associated with 
this equation are determined by the requirement that 1/10 
must decay with time and 1/Ib must decay with distance 
from the boundary. The derivation of these conditions 
seems to resolve an outstanding question regarding the 
appropriate initial and boundary values for the diffusion 
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equation. In both the subcritical and near- critical 
cases, the leading term in I/Ib is determined as the solu­
tion of a steady half-space problem, in which the boundary 
near r is replaced by its tangent plane, and in which time 
occurs only as a parameter. Similarly 1/10 is the solution 
of a spatially independent initial value problem in which 
pOSition occurs as a parameter. The part 1/I0b is the 
solution of an initial- boundary value problem for a half­
space with spatially independent boundary data. Addi­
tional boundary layers are needed at edges and corners 
of boundaries, if there are any, and we show how they 
can be found. 

In Sec. 2 we formulate the problem and in Sec. 3 we 
apply the method to a subcritical region. In Sec. 4 we 
treat a near critical region. The results, which are 
obtained for the energy-dependent case, are specialized 
to the one-speed case in Sec. 5. In the Appendix the 
scattering operator K is described precisely, its spec­
trum is determined in some detail and the pseudoinverse 
of AI - K is analyzed. These results are used in the 
other sections and may be of general interest. 

We wish to thank Basil Nicolaenko for his helpful 
advice about the derivation of the results in the 
Appendix. 

2. FORMULATION 

Under suitable assumptions, the neutron transport 
equation is 

[aT + v-V + v£-1a(r,v)]I/I(r,v,T) 

= jV'I/I(r, v', T)E-1a1(r,O'oO, v' -7 v)dv' 
+ Q(r, v, T). (2.1) 

Here we have written the total cross section as £-10 

and we have written E-1a1 for the cross section for 
emission of a neutron with velocity v in the direction of 
the unit vector ° due to collision of a neutron with velo­
city v' in the direction 0'. This is to emphasize that the 
mean free path is small of order E. The coefficients a 
and a1 are assumed to be of the same order as a typical 
length of the domain D. Q is the rate of emission of 
neutrons by sources. We wish to solve (2.1) for 1/1 in D 
with 1/1 = g(r, v) given initially throughout D and with the 
incoming part of 1/1 given on the boundary of D for all 
t ~ o. 

To do so we introduce t = ET and we rewrite (2. 1) in 
the form 
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[Eat + v·V + E-1va(r,v)]1J;(r,v,t) 

== E-lK(va1J;) + Q(r, v, t). (2.2) 

Here we have introduced the integral operator K defined 
by 

K~(r,v) == Jc(r,v')!(r,O'.O,v'~ v)~(r,v')dv'. (2.3) 

In writing (2.2) we have assumed that 1J; and Q are func­
tions of t, and have used the same notation for them. In 
(2.3) we have introduced c(r, v') and! = a/a(r, v')c(r, v'), 
where c(r, Vi) is the mean number of neutrons emitted 
per collision of a neutron at r with speed v'. In terms of 
a l' c is given by 

a(r, v')c(r, v') == J a1 (r, n'· n, v' ~ v)dv. (2.4) 

From (2.4) and the definition of!, it follows that! 
satisfies the normalization condition 

J!(r,n'·o, v' ~ v)dv == 1. 

3. THE SUBCRITICAL CASE 

(2.5) 

When D is subcritical, and 1J; has the form (1.1), we 
assume that 1J;i possesses the asymptotic expansion 

00 

1J;i(r, v, t, E)"'" L) En1J;n(r, v, t). 
n=l 

(3.1) 

Substituting (3.1) into (2.2) and equating coefficients 
of like powers of E yields 

va1J;n -K(va1J;n) == 0n1Q - (lt1J;n-2 - v ·V1J;n-1' 

n == 1,2, • . •• (3.2) 

We call D subcritical when the largest eigenvalue of 
K is less than one. (See the Appendix.) Then the operator 
on the left side of (3.2) is uniquely invertible. This is 
the case, for example, when c is small enough. Then 
since 1J;-1 = 1J;o = 0 by definition; (3. 2) with n == 1 can be 
solved for 1J;1 with the result 

(3.3) 

The 1J; n with n > 1 are then given recursively by 

1J;n == (-1/va)(I-K)-1(a t 1J;n_2 + V·V1J;n_1),n> 1. (3.4) 

This completes the determination of the expansion 
(3.1) of 1J;i. It is to be noted that this expansion does not 
involve the initial or boundary conditions, so 1J;i does not 
satisfy them. We also note that all the 1J;n vanish at 
points where Q == 0, so 1J;i == 0 except within the source 
region Q of O. 

To find 1J;0. we introduce the stretched variable 
t' == E- 2t and the function 1J;'(r, v, t', E) defined by 

1J;'(r, v, t', E) == 1J;0(r, v, E 2 t', E). (3.5) 

Let the initial value of 1J; be g(r, v). We choose 
1J;o + 1J;i ==g at the initial time and then (3.5) yields 

1J;'(r, v, 0, E) ==g(r, v) -1J;i(r, v, 0, E). (3.6) 

Now we require 1J;o to satisfy (2.2) with Q == 0, because 
Q is accounted for by 1J;i. Upon using (3.5) in (2.2) with 
Q == 0 and multiplying the resulting equation by E, we 
obtain 

[il t • + EV·V + va]1J;' ==K(v a1J;'). (3.7) 

J. Math. Phys.. Vol. 15. No.1. January 1974 

76 

We next set E == 0 in (3.7) and (3.6) and obtain the 
follOWing initial value problem in which no spatial deri­
vatives occur, so that r enters as a parameter: 

ilt .1J;'(r, v, t', 0) == (K - I)(v a 1J;'(r, v, t', 0», 

1J;'(r, v, 0, 0) ==g(r, v). 

(3.8) 

(3.9) 

In the subcritical case the largest eigenvalue of K is 
less than one, so the solution 1J;' of (3.8) and (3.9) decays 
exponentially as t' increases. Since t' == E- 2t == E-1 T , the 
decay rate in T is very large, being proportional to E-1. 
Thus 1J;o is vanishingly small outside the initial layer of 
duration O(E). 

In order to determine 1J;b, we write the equation of the 
boundary of D in the form r == ro(~), where ~ is a two­
component vector parameter. We choose a parameter 
value ~o corresponding to a boundary point ro(~o), and 
introduce the stretched variable r' and the stretched 
parameter ~' by 

r == ro(~o) + Er', ~ == ~o + E~'. (3.10) 

Then we define \jt(r', v, t, E) by 

\jt(r',v,t,E) == 1J;b[ro(~o) + Er',v,t,E]. (3.11) 

Let the prescribed boundary value of 1J; be h(~, v, t) for 
v·n(~) < 0, where n(~) is the outward normal to the 
boundary. We chooseyb + 1J;i == h on the boundary for 
von < O. In terms of 1J; the boundary condition becomes 

\jt[E-1{roW - ro(~o)}, v, t, E] 

== h(~, v, t) -1J;i[roW, v, t, E], v·n(~) < O. (3.12) 

Upon using (3.10) for ~ in (3.12) and then letting E tend 
to zero, we obtain 

(3.13) 

This is just a boundary condition on the tangent plane 
to D at ro(~o), and the boundary value h is independent of 
position ~' on this plane. 

Next we require 1J;b to satisfy (2.2) with Q == O. When 
we use (3.11) for 1J;b in (2.2) with Q == 0, and multiply 
the resulting equation by E, we obtain 

[E2(lt + v·V' + v a{ro(~o) + Er', v}] $ 
== K(v a{ro(~o) + Er', v}$). (3.14) 

Now we set E == 0 in (3.14) and get 

[v·V/ + vo{ro(~o),v}]\jt(r',v,t,O) 
==KO(va{ro(~o),v}\jt(r',v,t,O»,r'.n(~o) < O. (3.15) 

Here KO is obtained from K, defined in (2.3), by using 
(3.10) for r in c and! and then setting E == 0, which 
yields 

KO~(r', v) == J c[ro(~o), v']![ro(~o),')'·n, v'~ vl 
x <P (r' , v')dv' • (3. 16) 

In deriving (3.16) from (2.3) we have used the fact 
that the value of r in c and! can be different from that 
of r in~. The condition r'·n(~o) < 0 is a consequence of 
the fact that r == ro(~o) + Er' mustlie in D. 

We now observe that (3.15) with the boundary con­
dition (3.13) is a half-space problem. The equation does 
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not contain any t derivative, so the equation is that for a 
steady state. Time enters the solution only parametri­
cally through the boundary condition. The equation has 
coefficients independent of position, and the boundary 
value is also independent of position. Thus the solution 
is independent of the coordinates which vary along the 
boundary, and it depends only upon the normal distance 
from the boundary. In the subcritical case we assume 
that the solution of (3.15) decays exponentially with this 
normal distance, so that in the r variable it decays at a 
rapid rate proportional to E-l. Therefore ljIb is negligibly 
small outside a boundary layer of width O(E). In order 
to evaluate ljI b at a point r in the boundary layer, we 
choose ro(~o) to be the point on the boundary nearest to 
t. 

We have now shown how to calculate all the terms in 
the asymptotic expansion of ljIi and the leading terms in 
the expansions of ljIo and ljIb. Further terms in ljIo and 
ljIb can be found by substituting expansions for them into 
the preceding equations and conSidering the coefficients 
of higher powers of E, but we shall not consider them. 
Instead we shall show why the part ljIOb is needed, and 
how to determine it. To this end we note from (3.1) that 
ljIi = O(E), while from (3.9) the leading term in ljIo sat­
isfies the initial condition to O(E) and from (3.13) the 
leading term in ljI b satisfies the boundary condition to 
O(E). Therefore the sum ljIi + ljIo + ljIb satisfies the 
initial condition to O(E), except near the boundary where 
ljIb, which is 0(1), violates it. Similarly the sum satisfies 
the boundary condition to O(E) except near t = 0 where 
ljIo, which is 0(1), violates it. It is to compensate for 
these 0(1) violations of the initial and boundary con­
ditions that ljIo b is needed. 

To find ljIOb we introduce both t' = E-2 t and r' defined 
by (3.10), as well as ~'. Then we define iii by 

iii(r', v, t', E) = ljIOb[ro(~o) + Er', v, E2 t', e]. (3.17) 

When we substitute iii for ljIOb into (2.2) with Q = 0, 
we get (3.14) with E2 0t replaced by at" Upon setting 
E = 0 in (3.14) with E20t = at" we obtain 

[at' + v·V' + va{ro(~o), v}]iii(r', v, t', 0) 

= KO( va{ro(~o), v}i{;(r', v, t', 0», r'·n(~o) < O. (3. 18) 

Next we use (1. 1) in the initial condition, make use of 
(3.5) and (3.9), and recall that ljI; = O(E) to get 

ljIOb(r, v, 0, E) 

= g(r, v) -ljIi(r, v, 0, E) -ljIO(r, v, 0, E) - ljIb(r, v, 0, E) 

= -ljIb(r, v, 0, E) + O(E). (3.19) 

By setting E = 0 in (3.19) we get ljIOb(r, v, 0, 0) = 
-ljIb(r, v, 0, 0). Then (3.11) and (3.17) yield 

iii(r', v, 0, 0) = - ~(r', v, 0, 0). (3.20) 

Proceeding similarly with the boundary condition, we get 

iiiW·v t ro(~o), v, t', 0] = - ljI'[ ro(~o)' v, t', 0], 
v·n(~o) < O. (3.21) 

The initial-boundary value problem (3.18), (3. 20), and 
(3.21) is that for a half-space in which the coefficients 
and the boundary value are independent of position. 
Therefore the solution depends only upon the normal 
distance from the boundary, as well as upon [' and v. 
This problem determines the leading term in l/Io b. We 
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assume that the solution decays exponentially with t' and 
with the normal distance. In the original variables T and 
r the decay rate is O(E-l), so the layer is of thiclmess 
O(E). 

If the boundary has an edge or vertex, there is an 
additional boundary layer term associated with it for the 
same reason as ljIOb was needed. This term can be found 
in the same way that we found ljIb above, but with ro(~o) 
a point on the edge or vertex. Then V tro(~o) has more 
than one limiting value there. As a consequence, the 
boundary condition (3.13) holds on the surface of a 
wedge or cone tangent to the surface at the edge or ver­
tex. Similarly (3.15) holds inside this wedge or cone, so 
the problem for this term is that of a wedge-shaped or 
cone-shaped region. 

If the domain contains an interface, a boundary layer 
term like ljIb must be included on each side of it. These 
terms can also be found in the same way as ljIb was. 

4. THE NEAR CRITICAL CASE 

We shall now show how to construct the asymptotic 
expansions of the four terms in (1.1) when D is a near 
critical reactor. We assume that the source strength is 
small and show this by replaCing Q by EQ in (2.2). We 
also assume that c(r, v) depends upon E and has the 
asymptotic expansion 

00 

c(r,v,E) ..... L; EnCn(r, v). (4.1) 
n=O 

However,j will be taken to be independent of E. Since 
c is given by (4.1), it follows that K, defined by (2.3), has 
the expansion 

(4.2) 

where Kn is given by (2.3) with c replaced by cn' Then 
Kn depends parametrically upon r and acts only on the 
velocity v, so the eigenvalues of Kn will be functions of 
r. 

By a near critical reactor we mean one for which the 
largest eigenvalue of the operator K o is equal to one 
throughout all of D, or throughout some subdomain Dc of 
diameter 0(1). Then the largest eigenvalue of K is nearly 
equal to one, in contrast to the subcritical case in which 
it is definitely less than one. In the Appendix we show 
that the largest eigenvalue of Ko, ~o(r), is Simple, and 
that the corresponding eigenfunction ¢o is positive and 
independent of the direction of v. Thus ¢o = ¢o(r, v) and 
when ~o(r) = 1 we have 

(4.3) 

When the near criticality condition is satisfied, we seek 
ljI; in the form 

00 

ljIi(r, v, t, E) ..... L; Enljln(r, v, t). 
n=O 

(4.4) 

Then ljIi = 0(1), 

The determination of ljIo is similar to that in Sec. 3, 
Eqs.(3.5)-(3.9) withK replaced byKo in (3.8) andg 
replaced by g(r, v) - ljIo(r, v, 0) in (3.9). 

Ifg -ljIo(r, v, 0) contains a component proportional to 
¢o/va, (4. 3) and (3.8) show that that component remains 
in ljI' independent of t'. In order that ljI' decay as t' in­
creases, that component must be absent. This will be the 
case if ljIo has the initial value 

ljIo(r, v, 0) = a(r)[ ¢o(r, v)/va(r, v)]. (4.5) 
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Here a(r) is defined so that the right side of (4. 5) is the 
component of g(r, v) along ¢o/va. When (4.5) holds then 
1/1' decays as t' increases. 

The derivation of 1J;b is similar to that in Sec. 3, equa­
tions (3.10)-(3.16). However KO must be replaced by 
KS in (3. 15), where the operator K8 is defined by (3.16) 
wIth c replaced by co' Also the right side of (3.13) must 
be replaced by h(~o, v, t) -1J;o[ro(~o)' v, t]. If this ex­
pression contains a comp~ne~t proportional to ¢o/vo, 
then that component remams m the solution 1/1 and is 
~ndependent of distance from the boundary. In order that 
1/1 decay away from the boundary, this component must 
vanish, which is the case if 

[ ] 
¢o[;ro(~o), v] 

I/I-n ro(~o), v, t) == b[ro(~o), t] • 
va[ro(~o), v] 

(4.6) 

Here b is defined so that the right side of (4.6) is the 
"half-range" componeRt of h along ¢o/va. We assume 
that when (4.6) holds,1J; decays away from the boundary. 

The derivation of I/IOb is the same as that in Sec. 3 
with KO replaced by K8 in (3.18). We still expect I/IOb to 
decay with time and distance from the boundary because 
its initial and boundary data contain no components along 
¢o/vo. 

Now we can proceed with the determination of the 
expansion (4.4) for I/Ii. The initial condition (4.5) and 
the boundary condition (4.6) have been imposed on the 
leading term 1/10' The governing equation for I/Ii is (2.2) 
with Q replaced by EQ. Substituting the series (4.2) and 
(4.4) into this equation and collecting coefficients of like 
powers of E yields the following system of equations: 

n 

(I- Ko)(va1J;n) == ~ Km(va1J;n-m) + °n2 Q 
m=l 

- 0t1J;n-2 - v o V1J;n_1' n ~ 0, (4.7) 

where 1/1-2 == 1J;-1 == O. The n == 0 equation is (I - Ko) 
(v a 1J;0) == 0, which has the general solution 

1J;o(r, v, t) == Ao(r, t)[ ¢o(r, v)/v o(r, v)]. 

Here Ao is undetermined. Now the n- == 1 equation 
becomes 

(4.8) 

In the Appendix we show that (4.9) has a solution for 
Ao f 0 only if the right side satisfies a solvability con­
dition which is, in this case, 

(4.10) 

Here ¢; is the eigenfunction of the adjoint operator 
K;, corresponding to the eigenvalue one. Equation (4. 10) 
is a condition on c 1 which can be satisfied, for example, 
by setting c1 = O. When (4.10) holds, we can write the 
general solution of (4.9) as: 

1J;1 == (1/va)[A 1¢0 + A o(LoK1¢O) -OoL 1V(Ao¢o/a)]. 
(4.11) 

Here A1(r, t) is undetermined, while Lo and L1 are 
operators related to the pseudo-inverse of 1- Ko and 
defined in the appendix. They depend parametrically 
upon r and act only on v. 

We now use (4.8) and (4.11) in (4.7) with n == 2 to 
obtain an equation for 1J;2' The solvability condition for 
this equation can be written in the form 
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- :Ao f ¢o¢~ vdv + t f ¢;V· [.!-..LIV A o¢olv2dv. 
t a CJ a J (4.12) 

Here we have used the identity 

(4.13) 

We now differentiate out the last integrand and collect 
terms in (4. 12) to obtain 

cAo 
h l -- == h2~Ao + h3°VAo + h4AO + Qo· 

at 

Th~ five coefficients in (4.14) are defined by 

hl(r) == f ¢o¢~ vdv, 
a 

h3 (r) = if [~LlV ¢a
o + V (~Ll ¢(10)] 

h 4 (r) = f [K1L oKl ¢o + K 2¢0 

+ iv ° ( ~LlV ¢(10)] ¢~ v2 dv, 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

The diffusion equation (4. 14) is the governing equation 
for Ao. The initial and boundary conditions for Ao are 
determined by (4.5), (4.6), and (4.8) to be 

Ao(r,O} == a(r), rEaD, 

Ao[ro(~o)' t] == b[ro(~o), t]. 

(4.20) 

(4.21) 

The initial-boundary value problem (4.14), (4.20), and 
(4.21) possesses a unique solution Ao(r,t). Thus 
I/Io(r, v, t), the leading term in 1J;i, is" completely deter­
mined by (4.8). We shall not obtain equations for the 
other I/In' which can be found by continuing the procedure 
used for 1J;0. 

We shall now show that 1J;0 is nonnegative, as it should 
be since it is a denSity. First we note that the factors 
¢o, v, and (1 in (4.8) are nonnegative. Since ¢~ is also 
nonnegative, (4.15) shows that hl > O. In the Appendix 
we show that for physically reasonable functions f, the 
operator L1 maps positive functions into positive func­
tions. Then (4; 16) shows that h2 > O. Furthermore, 
because the initial value g and the boundary value h of 
1J; are nonnegative, their expansion coefficients a and b 
are nonnegative. Now Ao satisfies (4.14) in_which h l ,h2 , 

the source term Qo, and the initial and boundary values 
of Ao are all nonnegative. Therefore Ao is nonnegative, 
and thus so is 1/10' 

Finally we shall discuss the criticality of the reactor 
D by considering the homogeneous boundary value prob­
lem (4.14) and (4.20) with Qo == a == O. It is convenient 
to normalize ¢o so that hl(r) == 1. Then the product 
solutions e At¢(r) of the homogeneous problem are deter­
mined by 

(4.22) 
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¢(r) = 0, rEaD. (4.23) 

If all the eigenvalues A of this problem are negative, 
then Ao will be bounded if band Q ° are, and Ao will tend 
to zero as f increases if band Q ° do. This is a sub­
critical case, just like that considered in Sec. 3. If one 
eigenvalue is zero and the rest are negative, the reactor 
is critical, while if any eigenvalue is positive the reactor 
is supercritical, since it possesses a neutral or a grow­
ing mode in these respective cases. 

5. ONE-SPEED TRANSPORT THEORY 

We shall now specialize the preceding results to the 
one-speed transport equation, which is obtained from 
(2.1) by setting 

f(r,n'·o, v'~ v) = fO(r,O'·O)(O(v' - v)/v2]. (5.1) 

We assume thatfO has the expansion 

00 

fO(r,O'·O) = L; [(2l + 1)/41T].t;0(r)Pz(0.0'), (5.2) 
100 

where the PI are Legendre polynomials. Then the 
normalization condition (2.5) shows thatfo0(r) = 1 
throughout D. By using (5.1) and (5.2) in (2.3), we can 
write K in the form 

(Kcp)(r, v) 

= [e(r, v)/41Tl ffO(r,n'.O)cp(r, vO')dn' 
00 +1 

=c(r,v)L; .t;°(r) L; Yzm(O)fcp(r,vO')Yz:'(O')dO'. 
1°0 mo-I (5.3) 

Here Yzm are spherical harmonics and we have used 
the addition th€orem. From (5.3) we see that the eigen­
values of K are Aim (r, v) = e(r, v).t;0(r) and the corres­
ponding eigenfunctions are CP/m (0) = Yzm(O). These 
eigenfunctions are complete in the space of functions 
which are square integrable in O. 

When IAlm I = I c(r, v).t;0(r) I < 1 for all l and all r in 
D, D is subcritical and the results in Sec. 3 apply. In 
view of (5.3), the inverse in (3.3) can be written ex­
plicitly. Then since I/I i = El/l l + 0(E 2 ), we obtain 

"( ) E ~ 1 1/1' r, v, £ = --- L.J 
va(r, v) 1=0 1 - e(r, v).t;0(r) 

+1 

X L; Ylm(O)fQ(r,vO',f)Yz~(O')dO' + 0(E2). (5.4) 
m;-I 

The first term in 1/10 is the solution of (3.8) and (3.9), 
which can also be written explicitly, and then 1/10 is 
given by 

00 

wO(r, v, E) = L; exp{va(r, v)[c(r, v).t;0(r) - 1]t/E2} 
1;0 

+1 

X L; Yzm(O)fg(r, vO')Yz~(O')dn' + O(E). (5.5) 
mo-I 

The first term in I/Ib is the solution of (3.13) and 
(3.15), which is a "standard" static half-space problem. 
The boundary data and the coefficients are independent 
of position, and time enters the problem only as a para­
meter in the boundary data. Mika3 has considered this 
problem whenfo is a finite sum of PI. Therefore if 
fO[ro(~o),O.O'] is a finite sum, then I/Ib is given by 
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I/Ib(r, V, t) ~ Eo [Jv~o bnv[ro(~o), t]CPnv(il) 

X exp[- Ir - ro(~o)I/EII]dll 

M(~o) 

+ L; bnm[ro(~o), t]CPnm (0) 
m;O 

X exp[- Ir - ro(~o) I/EVnmlJ + O(E). 
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(5.6) 

Here ro(~o) is the point on aD closest to r, IInm' CPnm, 
and CPnv are eigenvalues and eigenfunctions of K at ro(~o), 
while bnm and bnv are the appropriate half-range expan­
sion coefficients of the boundary datum h(~o' v, f). 

The problem (3.18), (3. 20), and (3.21) for the first 
term in I/IOb is a standard initial-boundary value problem 
in a half-space, in which the coefficients and boundary 
values are independent of pOSition. This problem can be 
solved by standand methods when fO is a finite sum of 
Pl , but we shall not solve it. 

We next consider the near critical case in which the 
largest eigenvalue of K ° is equal to one throughout D. 
Since K o is given by (5.3) with e replaced by co' the 
eigenvalues and eigenfunctions of K o are Aim (r, v) = 
co(r, v)fp(r) and CPlm(r, v) = Y/m (0). In the Appendix we 
show that the largest eigenvalue is positive, Simple, and 
the corresponding eigenfunction is positive. Since only 
Yoo(O) is positive, Aoo must be the largest eigenvalue. 
Therefore the near criticality condition is coff] = I and 
since ff] = 1, this condition becomes 

(5.7) 

The problems for the leading terms in 1/10, I/Ib, and I/IOb 
are the same as in Sec. 4. In the present case (4.5) and 
(4.6) become 

Wo(r,v,O) = (1/41T)fg(r,vO')dO', 

I/Io[ro(~o), v, t] = tboo[ro(~o), t]. 

(5.8) 

(5.9) 

Then the initial value of 1/1' isgjr,vO) - (41Ttlfg(r,vO') 
dO' and the boundary value of 1/1 is h(~o, v, t) - 2- 1boo 
[ro(~o),t] since CPoo = 1/2 .4 

The result (4.8) still holds for 1/10' but (4.14) for Ao is 
not applicable because in deriving it we used a solvability 
condition which involved integration over the speed v. 
Therefore we shall derive a new equation for A o in the 
present case by following the procedure used to get 
(4.14). Since now the operator K does not act on the 
speed v, and since CPo in (4.8) is a constant, we shall 
rewrite (4.8) in the form 

I/Io(r, v, t) = Ao(r, v, t). (5.10) 

We next consider the system (4. 7) in which K n is given 
by (5.3) with c replaced by cn. For n = 1, (4. 7) is 

(5.11) 

The solvability condition for (5.11) is that the integral 
over 0 of the right side must vanish. If A o * 0, this 
implies that 

c l (r, v) = O. 

Then the solution of (5.11) is easily found to be 

1/11 = Al - a- l [l - tAO(r)1-10·'VAo. 

(5.12) 

(5. 13) 

Here A l (r, v, f) is undetermined. Now for n = 2, (4.7) 
can be written in the form 
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(/-KO)(va1/l2) = C2vaAO + Q - atAO 

- vn''i7[A l - a- l (l - tfP)-l{l''i7Ao]' (5.14) 

The solvability condition for (5.14) leads to 

(5.15) 

This is the governing equation for Ao. The initial and 
boundary conditions for Ao = 1/10 are stated in (5.8) and 
(5.9). This initial-boundary value problem determines 
Ao, which is the leading term in 1/I i • The behavior of Ao 
as t -) ex) depends upon the spectrum of the differential 
operator on the right side of (5.15), so criticality is 
determined as before. From (5.7) and (5.12) it is 
necessary that c(r, v) = 1 + 0«(2). 

In the steady state atAo = 0, (5.15) is asymptotically 
equivalent to the well-known diffusion or P l equation. 
(See, for example, Case and Zweifel, Ref. 5, pp. 196-207. 
Our derivation of this equation takes into account the 
scattering moments f~ with n 2: 2 and shows that these 
moments are properly absent from the equation. This is 
in contrast to previous derivations in which it is assumed 
at the outset thatfno = 0 for n 2: 2. Furthermore, 
except for the slab problem considered in Ref. 2, pre­
vious derivations do not lead to boundary conditions, 
whereas our derivation yields the boundary condition 
systematically. 

APPENDIX 

In this appendix we shall explain in detail the proper­
ties of the scattering operator K. We begin with a des­
cription of the scattering kernel f. Then with K defined 
on a suitable Banach space, we shall analyze the spec­
trum of K and prove the existence of a "largest" eigen­
value ~o with positive eigenfunction CPo' Next we shall 
assume that the scattering kernel is rotationally invari­
ant. For this case, we shall partially characterize the 
pseudoinverse of ~oI - K and prove that the eigenfunction 
CPo is a function only of v. We shall also do this for the 
one-speed case. 

The scattering operator K is defined by 

(KCP)(v) = J c(v')f(v' -) v)CP(v')dv', (A1) 

where we have suppressed r and where 

1 == J f(v'-) v)dv. (A2) 

We now write cf = bo(v' -) v) + bl(v'-) v), where bo 
accounts for fission and elastic scattering while b 1 

accounts for inelastic scattering. We assume that 
bo = b l = 0 for v> vo, that bo is piecewise continuous, 
and that 

o < a:s bo(v' -) v) :s b, v < vO' (A3) 

In addition, b 1 is the weighted sum of a finite number 
of delta functions, each one of which corresponds to a 
discrete energy loss. The weights are nonnegative 
piecewise continuous. 

Let X be the Banach space of functions CP(v) such that 
CP(v) = 0 for v > Vo and II cP II = J I CP(v) I dv < ex). Then 
from the above description of the kernel K, it follows 
that (K cP )(v) is defined for every cP E X and 

JIKCP(~)ldv:s 11.c(v')f(v'-)v)lcp(v')ldv'dv ,. ,. 
:s L. c(v') I CP(v') I Jyf(v' -) v)dv dv' 

:scllcpll. (A4) 

Here we have used equation (A2) and we have defined 
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c == supc(v). Since c(v) is the mean number of secondary 
neutrons produced in the colliSion of a neutron with 
speed v, it is bounded and so C exists. 

Equation (A4) shows that K is a bounded operator 
mapping X into X. Let us write K == Bo + B l , where 

(Bi CP)(v) == i, bi(v' -) v)CP(v')dv', i == 0,1. (A5) 
y 

Then because of the form of the kernels bi stated 
above, it follows that Bo is compact. Also, Bl is non­
compact, bounded, and there exists a least integer P such 
that Bi = O. 

We shall now establish certain "positivity" properties 
of B;. The definitions, which we state for convenience, 
can be found in Krasnoselskii. 6 Let Je c X be the cone 
of real, nonnegative functions. The linear operator A is 
"positive" if it maps X into itself. Let U o E X be defined 
by uo(v) == 1 for V:S vo' Then A is "uo-positive" if for 
every cP E X, there exist positive numbers G, {3 and a 
natural number n such that 

(A6) 

A is "uo - bounded above" if the second half of this in­
equality holds. A is "strictly U o -poSitive" or "strictly 
U o - bounded above" if either of the above respective 
definitions holds with n == 1. Then we have: 

Lemma 1: Let A be a linear, compact,uo-positive 
operator. Then A possesses an eigenvector CPo which 
lies in the cone X. CPo is the only eigenvector of A in X. 
The corresponding eigenvalue Ao is positive, simple, and 
greater in modulus than any other eigenvector of A. 

Now consider the operator KP == (Bo + Bl)P, which is 
a sum of products of Bo and Bl and each product con­
tains Bo, since Bf == O. Since Bo is compact and Bl is 
bounded, it follows that KP is compact. Since, by (A3), 
Bo is strictly Uo positive, then Bg is strictly Uo positive. 
Also, since every product of Bo and B 1 containing Bo is 
strictly Uo bounded above, then KP is strictly Uo positive. 
Let Xo be the subspace of X consisting of all elements 
which are piecewise continuous. Then Bo maps X into 
Xo and Bl maps Xo into Xo' Therefore every product of 
Bo and Bl containing Bo maps X into Xo, so KP maps X 
into Xo' 

USing the results that KP is compact, strictly U o posi­
tive, and maps X into XO' we can prove the following 
theorem. 

Theorem 1: Let K and X be as defined above. Then: 

(i) The spectrum of K consists entirely of point eigen­
values of finite multiplicity, except possibly for A == O. 

(ii) K possesses a pOSitive, Simple eigenvalue Ao which 
is greater in magnitude than all other eigenvalues of K. 
The eigenfunction CPo corresponding to ~o is strictly 
positive, and all other eigenfunctions of K are either 
complex or undergo changes in sign. 

(iii) CPo(v) is piecewise continuous and bounded, 

Proof of (i): Since KP is compact, the spectrum of 
KP conSists, except for A == 0, entirely of point eigen­
values of finite multiplicity, By the spectral mapping 
theorem, the spectrum of K conSists, except for A == 0, of 
isolated points. These points must all be point eigen­
values of finite multiplicity. 

Proof of (ii): We have shown that KP is compact 
and U o -positive. By Lemma 1, KP possess a unique 
eigenfunction CPo E X with positive eigenvalue which we 
denote by Ag with An > O. This eigenvalue is Simple and 
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greater in modulus than any other eigenvalue of KP. 
Therefore, by the spectral mapping theorem, exactly one 
of the values of (Ag) lip is a simple eigenvalue of K, 
greater in modulus than any other eigenvalue of Kif Let 
80 be the eigenfunction of K corresponding to (Ag) p. 

Then KPO o = AgOQ, and since A~ is simple,80 must be a 
linear multiple of ¢o. This shows that ¢o E X is an 
eigenfunction of K and, since K is a positive operator, 
Ao > 0 is the corresponding Simple largest eigenvalue of 
K. Since every eigenfunction of K is an eigenfunction of 
KP and since KP possesses only one eigenfunction in the 
cone X, then ¢o must be the only eigenfunction in X. 

Proof of (iii): Since KP maps X into Xo and since 
¢o is in the range of KP, it follows that ¢o E XO' This 
completes the proof of the theorem. QED 

Let us now assume that the scattering kernel f is 
rotationally invariant and smooth in its angular variable 
so that f can be written 

f(v' ~ v) =f(O'o n, v' ~ v) 

= ~ 2n + 1 Pn(O'oO)fn(v' ~ v), (A7) 
n~O 41T 

where the Pn are Legendre polynomials. Then K is the 
operator defined in (AI) withf given by (A7): 

co 2n + 1 
(K¢)(v) == ~ --Jpn(n'oO)c(v').r..(v'~ v)¢(v')dv'. 

n ~o 41T (AB) 

We shall consider the operator Aol - K. Let K* be the 
adjoint operator of K. K* has the same essential pro­
perties as K so that the adjoint eigenfunction ¢~ corres­
ponding to Ao is positive, piecewise continuous, and 
bounded. Then the solvability condition for the problem 

is 
(Aol - K)¢(v) == g(v) 

0= J g(v)¢~ (v)dv. 

(A9) 

(A10) 

We define the closed subspaces So' So, and Sl of X as 
follows. So is the subspace of all functions ¢ of the form 
¢ = ¢(v). So is the subspace of all functions ¢ of the 
form ¢ = ¢(v) which satisfy equation (A10). Sl is the 
subspace of all functions ¢ of the form ¢(v) :::: Ootf>(v). 
Here tf> is a vector function whose components lie in So' 
We can now prove the following theorem. 

Theorem 2: Let K be defined by equation (A B) and 
let the closed subspaces So' So, and Sl be as defined 
above. Let ¢o be the positive eigenfunction of Theorem 
1. Then: 

(i) ¢o and ¢~ are elements of So' 

(ii) There exists an operator Lo mapping So into So 
such that for ¢ E S6, 

(All) 

(iii) There exist scalar operators T 1 and L 1 mapping So 
into So such that for notf>(v) E Sl' 

(A12) 
and 

(A13) 

Proof: First let ¢o(v) be the positive eigenfunction 
of Theorem 1. Since K is rotationally invariant, any 
rotation of ¢o will also be an eigenfunction of Ao. Since 
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AO is simple, ¢o must then be independent of 0, and so 
¢o E So' For the same reasons, we also have ¢ ~ E So. 

Next we let ¢(v) E So. We introduce ¢ into (AB) to 
obtain 

(K¢)(v) =J c(v')fo(v'~v)¢(v')(v')2dv' == (To¢)(v). (A14) 

The operator Aol - K, restricted to So, can then be re­
placed by Aol - To' By (A9) and (A10), this operator is 
a one-to-one mapping of So into itself. Therefore the 
inverse Lo :::: (Aol - Tot1 exists and satisfies (All). 

Next we let ¢(v) = notf>(v) E Sl' We introduce ¢ into 
equation (AB) to obtain 

K(Ootf>(v)) = 0 0 J c(v')f1(v' ~ v)tf>(v')(v')2dv' 

(A15) 

This verifies (A12). Since ¢~ is independent of 0, 
every element ¢ E Sl satisfies (A10). Therefore Ao/­
K, restricted to S1> is a one-to-one mapping of Sl onto 
itself. The inverse therefore exists and is defined by 
(A13), where L1 = (Aol - T 1)-1. This completes the 
proof of the theorem. QED 

Now we show that if forward scattering dominates 
backscattering, then L1 is a positive operator on So. The 
spectrum of T l' L: (T 1), is a subset of L:(K) and Ao cj: ~ 
(T 1)' Therefore the spectral radius of T 1 is less than 
Ao and we can write L1 in the form 

00 Tn 
L1 = E _1_. 

n ~o AI>+l 

From (AB), we obtain 
1 

f 1(V'--7 v) = 21T i
1

P,f(p"v' ---7 v)dp,. 

(A16) 

(A17) 

In this equation, p, is the cosine of the scattering angle. 
If forward scattering dominates backscattering, thenf1 
will be positive. By (A15), T 1 will then be a positive 
operator and so by (A16), L1 will also be positive. 

Finally, we consider the one-speed scattering operator 

(K¢)(vO) = c(v)J f(Oon', v)¢(vO')dO', (AlB) 

where f(p" v) is a smoothly varying, strictly positive 
function of p, and v. If we fix v, then K is a compact, uo-
positive operator on the Banach space of functions 
absolutely integrable in O. Lemma 1 applies to K, and 
therefore K possesses a "largest" eigenvalue which is 
positive and Simple, and the corresponding eigenfunction 
is positive. 

Finally, we remark that although all of the results 
proved in this appendix apply to K, they are actually 
needed in Secs. 4 and 5 for Ko and K 1• It is easily seen 
that they do apply. The operators Lo and L1 used in 
Sec.4 are obtained by requiring Ao = 1 and replacing c 
by Co in (All) and (A13). The operator T 1 used in 
section 4 is obtained by setting c = c 1 in (A15). 
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We show by a suitable redefinition of momentum-space integrals that the technique of dimensional 
regularization can be extended consistently to include nonnormally ordered theories describing 
zero-mass particles. 

I. INTRODUCTION 

Several authors have recently suggested that analytic 
continuation in the number of space dimensions may be 
a convenient regularizing technique, especially in the 
case of gauge theories.l- 3 If this technique is applied to 
massless particles, however, several difficulties are 
encountered, such as the usual divergence of on-mass­
shell S-matrix elements. This difficulty can, in some 
theories,4 be resolved by considering the emission of an 
infinite number of massless particles. 

In this paper we shall be concerned with a somewhat 
different problem, namely, the elimination of infrared 
divergences arising from massless tadpoles of the form 
J d2w q(q2)-t, where 2w denotes the total number of space­
time dimensions (see Fig. 1). If the method of dimen­
sional regularization is applied to such tadpoles directly 
(see Sec. II), it is found that they yield infinity. If, on the 
other hand, the tadpole integral is first rewritten in the 
form 

d 2wq d'2k.J q q2 d'2k.J q q. P d 2wq 
J-- = J - 2J + p2 J---

q2 q2(q _ p)2 q2(q _ p)2 q2(q _ p)2 

p2 "t. 0, (1. 1) 

and if each of these integrals is then computed one by 
one, the value of this integral turns out to be zero. Hence 
there exists an inconsistency in the value of the tadpole 
integral depending on the way in which the method is 
applied. The problem is speCifically one of analytic con­
tinuation. 

It is the purpose of this article to demonstrate that 
these infrared divergences ariSing from massless tad­
poles can be eliminated consistently by a suitable re­
definition of the 2w-dimensional integration over 
momentum space.5 

The outline of our paper is as follows. We begin Sec. 
II with a summary of the method of dimensional regular­
ization and then explain why the present technique is in­
complete in the case of massless tadpoles. The central 
feature is the redefinition, in Sec. III, of the 2w-dimen­
sional Euclidean integral over momentum space, and the 
subsequent application of this new definition in Sec. IV to 
a consistent evaluation of tadpoles. 

II. PROBLEMS WITH DIMENSIONAL REGULARIZATION 

The main features of dimensional regularization are: 

(i) The Q parameter representation for momentum­
space propagators is employed: 

FIG. 1. Lowest-order massless tadpole. 
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.!... = 1. 00 do exp(- oq2), 
q2 0 

q2 > O. (2.1) 

(ii) All inner vector products are defined over a space 
of 2w dimensions. 

(iii) The momentum space integration is carried out by 
means of the formula 

J d'2k.J q exp(- f1iJ2 + 2b'q) = (1T/a)W exp(b 2/a), a> 0, 
(2.2) 

which defines what is meant by integrating the Gaussian 
integrand over a 2w-dimensional Euclidean space. 

(iv) The resulting expressions are expanded in a Laurent 
series about the pole at w = 2 and, subsequently, con­
tinued analytically to four-dimensional space-time. 

(v) Pole terms in the Laurent expansion are canceled 
by means of counterterms6 in the interaction Lagrangian. 
The value of the integral is then given by the remaining 
finite portion of the expansion. 

Although the technique of dimensional regularization 
has been remarkably successful, especially for gauge 
theories, the above prescription fails in the case of mass­
less fields such as gravitation. We shall now clarify 
where the conventional prescription is defective and why. 

The integral I, 

d2wq 00 

1= J -- = J d 2wq J exp(- uq2)du = 1T W J 00 du u- w, 
q2 0 0 (2.3) 

associated with the tadpole shown in Fig. 1, exhibits an 
infrared divergence as w -) 2, the undesirable infinity 
arising specifically from the lower limit of integration 
u = O. We also note that, due to this divergence, the 
interchange of the u- and q-integrations in Eq. (2. 3) is 
strictly not permissible. 

It is clearly desirable to find a more meaningful re­
presentation of the tadpole integral (2.3) (See Sec. III). 

The integral (2.3) may also be written in a slightly 
different form, Le., 

1= J~2wq. (q _p)2 = J d2wq~_ 2Jd2wq q.p 
q2 (q _ p)2 q2(q _ p)2 q2(q _ p)2 

d2w q 
+ p2 J ,p2 "t. O. (2.4) 

q2(q _ p)2 

Evaluating the three integrals on the right-hand side 
of (2.4) separately and applying the technique outlined at 
the beginning of this section, we obtain 

1= {1TW(p2)w-lr(1 - w)[(1 - w)B(w - 1, w - 1) 
- 2(1 - w)B(w - 1, w) + (1 - w)B(w - 1, w + l)l} 
+ W1Tw(p2)w-lr(1 - w)B(w, w), (2.5) 

where the r and {3 functions are defined by 

Copyright © 1974 by the American Institute of Physics 82 



                                                                                                                                    

83 D. M. Capper and G. Leibbrandt: Dimensional regularization 

r(z) = J
o

oo 
dt t z- 1 exp(- t), Rez > 0, (2.6) 

and 
1 

B(x,Y) = 1. dt t X - l (1 - t)y-l, a 
Rex > 0, Rey > 0, 

(2.7) 
respectively. Looked at naively, it would seem from 
(2.5) that I is zero. To see that this is not so, we note 
that each of the terms in the bracket { .•. } is analytic in 
the finite strip:.Dl: 1 < Rew < 2, while the last expres­
sion, involving r(1 - w)B(w, w), is only analytiC in the 
strip :.D2 : ° < Rew < 1. Since the domains of analyticity 
:.Dl and :.D2 do not overlap (:.Dl n :.D2 = cp), there exists no 
unique analytic continuation of the corresponding func­
tions from :.Dl to :.D2 and conversely. ThiS, in turn, rules 
out any possible cancelation between the terms in { ... } 
and w1TW(P2)W-lr(1 - w)B(w, w). 

The situation is totally different for massive particles. 
For instance, one can evaluate the integral 

d2w q J = 1Tw(m2)w-lr(1 - w), 
q2 + m2 

Rew < 1, m 2 ~ 0, 
(2. ij) 

in either way and still obtain the same result. Un­
fortunately, the method of inserting a finite mass and 
letting it approach zero at the end of the calculation is 
not a useful regulating device. In the first place, the 
result is ambiguous, depending on the order in which the 
limits are taken. Secondly, a finite mass will break what­
ever gauge invariance there might be. Certainly a some­
what different approach is required. 

III. REDEFINITION OF GAUSSIAN INTEGRALS IN 
2w-SPACE 

A. The function f(wl 

In Sec. II we discussed some of the difficulties which 
arise in the treatment of massless tadpoles. In this 
section we shall show how these problems can be over­
come by a suitable modification of the gaussian integral 
(2.2). To this effect let us consider the following 

Definition: 

J d2w q exp(- aq2 + 2b·q) = (1T/a)W exp[(b 2/a) - af(w)), 

a > 0, (3.1) 

where the vector b
JJ 

is defined over a 2w-dimensional 
space and a behaves like a c-number in that space. The 
new function f(w) satisfies the following five properties: 

(i) f(w) is a nonzero analytiC function of the complex 
variable w = x + iy, 2w being the total number of space­
time dimensions; 

(ii) f(w)=Oforw=tn, n=0,1,2,"'; 

(iii) Imf'(w) = ° for w = tn, n = 0,1,2, ..• , where 
the prime denotes ordinary differentiation with respect 
to Wj 

(iv) Ref'(w) = ° for w = tn, n = 0,1,2, •.. ; 

(v) [Ref(w)) > ° for any Rew, w ~ tn, and for some 
Imw. 

Property (i) is required so that we can expand f( w) in 
a.Laurent series about w = 2. Property (ii) is necessary, 
smce (3.1) must agree with (2.2) for 2w a positive 
~teger. Furthermore, since the original integral (3. 1) 
IS real (for w::= tn, n = 0,1,2, ..• ), it is reasonable to 
require the imaginary part of the regularized integral to 
be zero as well. This leads to property (iii). There does 
not seem to be any compelling mathematical reason why 
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Ref'(w) should vanish [property (iv)) but, if it can be 
arranged, it is certainly preferable, since the resulting 
integrals are then scale invariant. Finally, the applica­
tion of the definition (3.1), together with property (v), 
permits a consistent computation of all integrals, pro­
vided we keep w complex until all operations involving 
integrals have been completed. Only then do we invoke 
the principle of analytic continuation to justify the return 
to physical four-space, w = 2. 

B. Construction of f(w I 
We now show that there exists at least one function 

f(w) satisfying properties (i)-(v) in Sec.IIIA. 

Consider 

f( w) = 1 - exp[21Tig( w)), 

g( w) = 1 - COS21TW. 

w = x + iy, (3.2a) 

(3.2b) 

Property (i) is readily established by recalling the 
elementary theorem 7 which states that the function of an 
analytic function is again an analytiC function. Since g( w) 
is analytic in the whole w plane, it follows that f (w) is 
likewise analytic everywhere. Furthermore, since f( w) 
vanishes for w = 0, + t, 1,~, 2, .•. , the second property 
is also satisfied, while properties (iii) and (iv) follow 
from the differentiability off(w) [cf.property (i)) which, 
together with (3. 2b), leads to 

df(w) --= 4i1T2 sin1Tw exp[21T~( w)) 
d(w) 

= 21T~'(W) exp[21T~(W)) 

= ° for w = n/2. (3.3) 

It remains to be shown that {Ref(w)} > ° for every 
Rew ~ n/2, n = 0,1,2, .•. , and for some Imw. Separating 
f(w) into real and imaginary components, with W::= X + iy, 
we obtain 

f(w) = U + iV, 

where 

U = 1 - (COS21TA) exp(- 21TB), 

V = - (sin21TA) exp(- 21TB), 

and 

A = 1 - COS21TX cosh21TY, B = sin21Tx sinh21TY. 

(3.4) 

(3.5) 

(3.6) 

It is now easy to verify that for any x ~ n/2, n ::= 0,1, 
2, .•• , we can find some y such that U > O. Of course for 
integer or half-integer values of x and y ::= 0 both U ;nd 
V vanish independently as required by prope~ty (ii). 

This completes our discussion of the function (3.2). 
There exist, no doubt, other functions which satisfy pro­
perties (i)-(v), butf(w) is particularly easy to handle 
because of its exponential character. 

IV. ELIMINATION OF TADPOLES FOR ZERO-MASS 
PARTICLES 

The more general definition (3. 1) of the 2w -dimen­
sional GaUSSian integral enables us to: 

(i) compute the massless tadpole integral J d2wq(q2)-1 
unambiguously; 

(ii) establish consistency of (i) above with the evaluation 
of the integral 

Jd2wq (q_P)2. 

q2 • (q _ P)2' 
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(iii) derive in a more concise manner a previous result 
of the authors concerning 04 (0) terms.S 

A. The tadpole integral 

Let us first evaluate, with the aid of Eqs. (2.1) and 
(3.1), the integral 

1= J d 2w q(q2)-1 = J d 2wq Joo du exp(- uq2) (4.1) o 
= 1fW J

o
oo 

du u- w exp[- uf(w)]. (4.2) 

Since we may choose, by property (v), the real part of 
f( w) to be positive definite for all w r' n/2, n = 0, 1, 2, ••• , 
we can complete the integration in (4. 2) by means of 
(2.6), obtaining 

(4.3) 

where r(1 - w) is analytic in the semi-infinite strip 
Rew < 1. Before r(1 - w) can be expanded about w = 2, 
it is necessary to continue this function analytically to 
other values of w by means of the partial fraction 
exapnsion9 

00 (- 1)n 00 

r(1 - w = E + f dt t- w exp(- t). (4.4) 
n~on!(n + 1- w) 1 

Substituting 

r(1- w) 

= - ! -~- + 1/1(2) + M2 - w) f1f2 + 1/1 2(2) _1/1'(2)1 12 - w L3 'J 
+ 0«2 - W)2) ~, (4.5) 

1/I(w) = ~ lnr(w), 
dw 

(4.6) 

into the right-hand side of Eq. (4. 3), and expanding about 
w = 2, we find that 

1=- 1f w[t(2 - w)8i1T 3 + t(2 - w)28i1f31/1(2) + 0«2 w)3)]. 
(4.7) 

As w -) 2, the tadpole integral (4. 7) reduces, therefore, 
formally to zero: 

J~4q = O. 
q2 

(4.8) 

It should be noted that we have not proved that tadpoles 
are zero (the original integrals are manifestly divergent), 
but only that within the context of dimensional regulariz­
ation such diagrams may consistently be put equal to 
zero. 

B. Consistency of Eq. (4.8) 

We shall next demonstrate the consistency of the 
result (4.8) with the value obtained from the integral 

1= Jd
2wq = J!!.2w

q • (q _P)2, p2 r' 0, (4.9) 
q2 q2 (q _ p)2 

= p2 J d
2w

q _ 2J
d2wq !!.:.!!-.- + J d

2
wq q2 • 

q2(q p)2 q2(q _ p)2 q2(q p)2 
(4. 10) 

We recall from Sec. II that multiplication of the 
original integrand by (q - p)2/(q - p)2 is inconsistent 
for massless particles if the conventional dejinition (2.2) 
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is employed. Using definition (3.1), however, one obtains 
for the first integral in (4.10), 

d2wq 
J 1 == J q2(q p)2 

= J
o

oo 
J
o

oo 
du dv[J d2wq exp[- uq2 - v(q - P)2]] (4.11) 

= J
o

oo 
Jo

oo 
du dV{1fW (u + v)-W exp[p2v2(u + V)-1 

- (u + v)f( w)]} exp(- vP2) (4.12) 

= 1fW J
0

1 d~Jooo dX X1- w exp(- ill), (4. 13a) 

where 

R =p2~(1-~) + few), 

so that 

(4. 13b) 

(4.14) 

The domain of validity of J 1 is now a semi-infinite 
strip, in contrast to thefinite strip appearing in Eq. (2.5). 
To see this we observe that the integral 

1 
J
o 
dMP2~(1 - ~} + f(W)]w-2 

is not a {3 integral in general, since {Ref( w)} r' 0 for 
arbitrary w. 

The other two integrals in (4.10) yield, in Similar 
fashion, 

d 2wq q 
J = 2p J Jl 

2 - - Jl q2(q _ p)2 

1 = - 2p21fwr(2 - w)~ d~(1- ~)Rw-2. (4.15) 

(4.16) 

where the two r functions in Eq. (4. 16) impose different 
restrictions on w, namely,Rew < 1 and Rew < 2, re­
spectively. Substituting the right-hand side of Eqs. 
(4.14)-(4.16) into Eq. (4. 10) and simplifying the result­
ing expressions by means of the identities 

(4.17) 

1 
p2 J

o 
d~ ~2R w-2 

1 
+ f(w)J

o 
d~ Rw-2, (4.18) 

and with the help of the reduction formula 

1 
J d~ ~2 Rw-2 = [2p2(1 2W]-1{2(f(w))W-l 

o 1 

- [wp2 + 2(f(w»2]J
O 
d~ Rw-2}, (4.19) 

we find that 

1= Jd
2"!. (q _p)2 = 1fw(f(w))w-1r(1- w). (4.20) 

q2 (q _ p)2 
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Since the right-hand side of (4.20) is identical with 
(4.2), it follows immediately that 

f d4
q(q - p)2 = 0, 

q2(q _ p)2 
(4.21) 

which is consistent with the previous result (4.8). In a 
similar way we can show that 04 (0) terms also vanish 
formally as w -? 2, in agreement with Ref. 8. 

V. CONCLUSION 

We have shown that a suitable definition of the 2w­
dimensional Gaussian integral in momentum space 
enables us to put massless tadpoles conSistently equal 
to zero. The definition we have chosen is, of course, not 
unique, but this merely corresponds to the usual ambig­
uity in the choice of subtraction point. However, our 
choice of definition (3. 1) has the advantage of simplicity 
(e.g., it does not give rise to branch cuts in the w-plane) 
and it gives, moreover, consistent results when applied 
in different ways. The technique described here has 
been successfully applied to one-loop calculations in 
quantum gravity, where results consistent with the 
Slavnov-Ward identities have been obtained,lo 

For higher-order tadpoles the situation is consider­
ably more complicated, although it is not necessary to 
introduce additional regularizing parameters Wi' i = 1, 
2, ••• , as has been described in Ref. 2. 
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The conjecture by 't Rooft and Veltman that fd 2Wq(q2) A-\ = 0 (w. A complex). within the context 
of dimensional regularization. is proven in the case of zero-mass particles for any w when A = 1.2 •... 
and for A = 0 in the limit w - 2. 

1. INTRODUCTION 

Sparked by the fundamental work of 't Hooft,l the re­
normalization of gauge theories is now one of the most 
exciting and promising areas in quantum field theory. 
An important mathematical aspect of the new renor­
malization program is the method of dimensional regu­
larization 2 - 4 which allows-at least in principle-for a 
consistent, gauge-invariant computation of Feynman 
integrals. 

The central feature of dimensional regularization is 
the concept of analytic continuation in the number of 
dimensions. The trick is first to represent all integrals 
by analytic expressions in a space where these integrals 
are well-defined and then to continue these expressions 
analytically to Minkowski four-space. The technique of 
dimensional regularization has the additional advantage 
of treating highly divergent Feynman integrals of the 
type 1 d4q( q2)n , n = 0, 1, 2, ..• , in a consistent manner. 
This was first pointed out in the case of massive par­
ticles by 't Hooft and Veltman. 5 They observed that 
within the framework of dimensional regularization no 
inconsistencies arise, for example, in the various 
Slavnov-Ward identities,6 if one assumes that 

Id2wq(q2) 1.-1 = 0, w, A complex. (1.1) 

Here 2w is the total number of dimensions so that w = 2 
corresponds to physical four-space. 

The purpose of this note is to prove the 't Hooft­
Veltman conjecture (1. 1) for A = 0,1,2, ... in the case 
of massless particles. (For massive particles the 
proof is straightforward and could be conducted, for 
example, along the lines suggested in Ref. 7.) We shall 
specifically show that for integrals over a polynomial, 
A = 1,2, ... , the conjecture (1.1) holds for any value of 
the regulating parameter w, whereas for A = ° (tadpole 
integral), it only holds in the limit w -7 2. 

Integrals of the form 

I d2wq(q2)A-1 = 0, A = 0,1,2, ... (1. 2) 

appear naturally in quantum gravity, where they arise in 
one-loop and two-loop graviton-graviton calculations 6 as 
well as in the treatment of lower-order and higher­
order tadpoles. 

2. THE CONTINUITY FUNCTION f{w) 

Following the technique of Ashmore,4 the first step in 
the method of dimensional regularization is to define all 
momentum space integrals over a complex 2w-dimen­
sional Euclidean space and to parametrize the various 
propagators in that space according to 

86 

1 
q2 

loCO dx exp(- xq2), q2 > 0. (2.1) 
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The second step consists of integrating over momen­
tum space by means of the generalized Gaussian formula 

I d2w q exp[- xq2 + 2bq] = (1T/X)W exp(b 2/x) , x> 0. 
(2.2) 

The prescription (2.1), (2. 2) works satisfactorily in 
the case of massive fields, but is inSUfficient for theories 
involving massless particles such as quantum gravity. 
The difficulty is precisely one of analytic continuation. 
For gravity it is necessary to replace formula (2.2) by 
the extended definitionS 

1 d2w q exp[ - xq2 + 2bq] 

= (1T/X)W exp[(b 2 /x} -xf(w»), x> 0, (2.3) 

where the continuity function f(w) satisfies the following 
four properties: 

(i) f(w) is a nonzero analytic function of the complex 
variable w = a + iT; 
(ii) f(w) = ° for w =~, n = 0,1,2, ... ; 
(iii) f'(w) = ° for w =~, n = 0,1,2, ... ; 
(iv) [Ref( w)] > ° for any Rew, w '" ~,and some Imw. 

The new definition (2.3) allows us to compute zero mass 
integrals in a consistent and unambiguous manner, 
provided the regulating parameter w remains complex 
until all formal manipulations involving integrals have 
been executed. 

3. PROOF OF CONJECTURE 

Let us apply Eqs. (2.1) and (2.3) to the integral 
1 d2wq(q2t1; then 

I d2w q(q2t1 = 1T W loCO ax x-w exp[- xf(w)]. (3.1) 

Differentiating both sides of the equation 

I d2w q exp(- xq2) = 1T W X- W exp[- xf(w)] (3.2) 

A times with respect to x, A = 0,1,2, •.. , we obtain 

1 A r(A+1)r(w+j) 
d2wq(q2) A exp(-xq2) = 1T

w ROr(j)r(A _j + l)r(w) 

x f A-j x- w- j exp(- xf), A = 0,1,2, ., ., (3.3) 

so that ,\ 
- Id2w (2)1.-1 w:B r(A + 1)r(w +j)f A

-
j 

1= q q = 1T j~O r(j)r(A - j + l)r(w) 

x 10"'" dx x- w- j exp(- xf), A = 0,1,2,. ", (3.4) 

or in a more suggestive form, 

w+)d ~ r(A + 1)r(w + j) 
I = 1TW[J( w)] j~ r(j) r(A - j + 1) r( w) 

x 1000 

da a-w-j exp(- a), A = 0,1,2, . . • . (3.5) 
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The last integral is well-defined for all Imw ~ O. We 
note that had we employed definMion (2.2) instead of 
(2.3) we would have obtained 10 dx x-W - A rather than the 
integral in (3.4). The former integral contains a diver­
gence as w -; 2 which makes further operations of this 
and similar integrals meaningless. Integrating now 
(3.5) we readily obtain 

[f( )] W+A-l b r(.\ + l)r(w + j)r(1 - w - j) 
1=1T

W 

W )=0 r(j+1)r(.\-j+1)I'(w) , 
(3.6) 

where we have used Euler's representation of the r 
function: 

r(z) = 1000 

df t Z
- 1 exp(- f), Rez > O. (3.7) 

The right-hand side of Eq. (3.6) may be simplified by 
observing that 

r(w + j)I'(l - w - j) = (_ l)ir(1 _ w) 
r(w) , (3.8) 

so that Eq. (3.6) reduces to 

W+A 1 ~ (- l)ir(.\ + 1) 
1= 1Tw[J(W)] - I'(1 - w) i~ r(j + 1)I'(.\ - j + 1) 

(3.9) 
Since 

A (-l)ir(.\ + 1) _ {' 1 for .\ = 0 
J~ r(j + 1)I'(.\ - j + 1) - 0 for .\ ~ 1, 

(3.10) 

(3.11) 

we see immediately that the left-hand side of Eq. (1. 1) 
becomes: 

{ 

1Tw[J(W)]W+A-l I'(1 - w) 1 d2w q(q2) A-1 == 
o 

for.\ = 0 
(3.12) 

for )0, ~ 1. 
(3.13) 

Equation (3.13) shows that the integral over a poly­
nomial vanishes for any value of the regulating para­
meter w, in particular for w == 2. For .\ == 0, we recover 
from Eq. (3.12) the tadpole integral 

(3.14) 

which vanishes 8 in the limit w -; 2 when the right-hand 
side of Eq. (3.14) is analytically continued to Minkowski 
four-space: 

lim J d2 wq(q2)-1 = O. 
w"'2 

(3.15) 

The limit in Eq. (3.15) is unique. This follows direct­
ly from the analyticity of the continuity function f(w): 
Since the limit of f(w) exists at w = 2, that limit has, by 
definition, a unique value. This completes our proof of 
the 't Hooft-Veltman conjecture (1. 2). 
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4. DISCUSSION 

We have proved in the case of massless particles that 
integrals over a polynomial,.\ == 1,2,3, •. , are strictly 
zero in the context of dimensional regularization. The 
proof is made possible by employing the extended 
definition (2.3) of a 2w-dimensional Gaussian integral. 
This definition is characterized by the introduction of a 
nonzero analytic function f(w) specifically designed to 
cope with massless particles. 

Although integrals of type (1. 2) are in prinCiple 
highly divergent (in Minkowski space), dimensional 
regularization permits us to equate them formally to 
zero. If and when this is done, it is found that no in­
consistencies emerge, for example, in the Slavnov­
Ward identities derived for the graviton and fictitious 
particle contributions to the graviton propagator. 9 The 
same conclusion holds for the three lowest-order tad­
pole contributions to the graviton self -energy. 6 

We finally remark that the conjecture (1. 2) is ex­
tremely useful in the treatment of multiple-loop mass­
less integrals of the form 

d4pd4q r d4Pd4q 1 or . 
p2(q _ p)2q2 . q2(q _ P)2p2(k _ P)2 

Such integrals will be discussed in detail elsewhere. 
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The case of a noninteracting infinite Bose gas at zero temperature is studied in the formalism of 
local current algebras. using the representation theory of nuclear Lie groups. The class of 
representations describing such a system is obtained by taking an .. N I V limit" of the finite case. 
These representations can also be determined uniquely from the solutions of a functional differential 
equation. which follows in tum from a condition on the ground state vector. Finally a system of 
functional differential equations is formulated for a theory with interactions, using a proposed 
definition of indefinite functional integration. 

1. INTRODUCTION 

There are two main reasons that nonrelativistic 
models based on algebras of local currents have re­
cently drawn the attention of theorists. 1-3 First, they 
provide an interesting reformulation of ordinary quan­
tum mechanics in terms of observables such as the 
particle number density p(x) and the particle flux den­
sity J(x), rather than the second-quantized field opera­
tor 1/1 (x). In this paper we employ such a reformulation 
to study the properties of an infinite Bose system. For 
the case of noninteracting bosons at zero temperature, 
the local current algebra approach leads to an elegant 
restatement of known results.4 When interactions are 
included, we develop a system of coupled functional dif­
ferential equations whose solution would describe the 
properties of an interacting Bose gas. While these equa­
tions are not expected to yield explicit solutions to most 
interacting theories of interest, it is our hope that they 
will prove susceptible to some method of approximation. 

The second reason that such nonrelativistic models 
are studied is that they may eventually shed light on 
local relativistic current algebras. As emphasized by 
Haag and by Wightman, there are many similarities be­
tween relativistic quantum field theory and the quantum 
mechanics of nonrelativistic systems having infinitely 
many degrees of freedom. 5- 6 In particular, the vacuum 
state in quantum field theory is the analog of the non­
relativistic ground state. It is to be hoped then that the 
techniques of nonrelativistic current algebra can be 
carried over and incorporated into the study of relati­
vistic models.1 , 7-10 

This paper is concerned with infinite Bose systems 
in the "N / V limit" or thermodynamic limit, in which 
the total number of particles N and the volume V of 
the system become infinite while the average density 
j5 = N / V approaches a finite constant. 

In Sec. 2 we review the case of a noninteracting infi­
nite Bose gas at zero temperature, from the standpoint 
of group representation theory. The group is that ob­
tained by exponentiating the local current commutators. 
Consequently, the focus of attention is on the properties 
of the ground state expectation functional 

(1.1) 
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In Sec. 3 we show how a condition on the ground state 
vector, 

('Vp + 2iJ)(x) no = 0, (1.2) 

uniquely determines the class of representations obtained 
by other means in Sec. 2. Section 4 reviews the concept 
of functional differentiation and proposes a speCific defi­
nition for a companion concept, the indefinite functional 
integral. The results of Sec. 3 are recast as the deriva­
tion and solution of a functional differential equation. 

Finally, Sec. 5 formulates a system of such functional 
differential equations for a theory with interactions. 

2. THE FREE BOSE GAS AT ZERO TEMPERATURE 

A. Preliminaries 1·3,11 

A second-quantized nonrelativistic Bose field 1/1 (x) 
satisfies the canonical commutation relations 

[1/I(x),1/I*(y)] = o(x- y), 
(2.1) 

[1/1 (x),1/I (y)] = [1/I*(x)'lft*(y)] = O. 

The Fock representation for such a field is defined as 
follows. Let Xn be the Hilbert space of complex square 
integrable functions of n vector variables which are 
symmetric under the exchange of particle coordinates, 
and let X == Efl:"= 0 Xn be the direct sum of the X n. A vec­
tor >JI E X has components W n E Xn with (w, W) == 
:0n(w n' W n) < 0Cl. The action of the fields lft(x) and lft*(x) 
in X is defined by 

and 

[1/1* (x) w],. (x1 ' •• , ,Xn) 
n 

= n-1/ 2 :0 o(x- x j )>Ir n-1(x1'" • xi' ... ,xn)· 
j=1 (2.3) 

Defining the number density of particles as 

p(X) = 1/1 * (x) 1/1 (x) (2.4) 

and the particle flux density (for particles of unit mass) 
as 
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J{x) == (1/2i)[lP*(x)VlP(x) (VlP*(x» lP(x)], 

one obtains the equal time current algebra 

[p(x), p(y)] == 0, 

[p(x), Jk(Y)J = - i (0 lox k ) [0 (x - y)p(x)], 

[Jj(X),Jk(y) J 

(2.5) 

(2.6) 

(2.7) 

== - i _0_ [o{x- y)Jj(x)] + i ~ [o(x- y)Jk(y)]. 
ox k oy} (2.8) 

IntrodUCing the smeared currents 

p(f) = J p(x)f(x)d3x 

and 
J(g) == J J(x)'g(x)d3x, 

we obtain the infinite-dimensional Lie algebra 

[p(f),p(g)] == 0, 

[p(f),J(g)] == ip(g °Vf), 

[J(f),J(g)] == iJ(g °Vf - f ·Vg). 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

In Eqs. (2.9)-(2.13) the smearing functions (or their 
components) belong to Schwartz's space S of CtlQ func­
tions of rapid decrease. 

The action of p (f) and J (g) in the Fock representation 
(2.2)-(2.3) is given by 

n 

(2.14) 

n 
[J(g)v)n=-~i.L; [g(Xj)'Vj+Vjog(Xj)]vn' (2.15) 

jol 

The operators p(f) and J(g) preserve Je n as a sub­
space of Je, and restricted to Je n , define the n-particle 
representations of the current algebra (2.11)-(2.13). 

A group is obtained by exponentiating the Lie algebra 
(2.11)-(2.13). Define 

U(f) == eip(f) (2.16) 
and 

(2.17) 

where fl't g: R3 ~ R3 is the jlow for time t by the vector 
field g; i.e., 

(2.18) 

and fl'toOg(x) = x. Then U and V satisfy the group multi­
plication rules 

U(f) U(g) == U(f + g), 

V(1/I)U(f)== U(f 01/1) V(lP), 

V(fI') V(I/I) = V(I/Io tp), 

where 1/1 0 fI' denotes the composition of the flows. 

(2.19) 

(2.20) 

(2.21) 

A representation of the group satisfying (2.19)-(2.21) 
is in fact a representation of the semidirect product 
S 1\ 3<., where S is the group of all /'s (under addition) 
and Je is the group of alllP's (under composition). The 
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representation theory of such a semidirect product 
typically focuses attention on the functional 

L(f) = (0, U(f) 0), (2.22) 

where 0 is a cyclic vector for the U(f)'s in the repre­
sentation.1Z 

B. The "N!V" limit 

Consider a system of N bosons in a box of volume V. 
The N-particle representation of the Lie algebra (2.11)­
(2.13) describes such a system. Periodic boundary con­
ditions require the smearing functions to be Coo functions 
on the torus T3, a cube of volume V and of length 2L in 
each spatial direction with corresponding pOints on oppo­
site boundaries identified. The N-particle representa­
tion of the group (2.19)-(2.21) is 

UN, y(f)v(xl"" ,xN ) = exp (i I;f(X)V(X1 , •.• ,xN ) 

Jol 1 (2.23) 
and 

V N, y (1/1) v(~, •.. , X N ) == v(l/I(x1 ), ••• ,I/I(XN » 
x (det ~tlk (X~ liz (2.24) 

where 1/1 is a C
GO 

flow on the torus. The determinant of 
OlP k /ax l is the Jacobian of the flow, expressed in the 
system of local coordinates obtained by the above­
mentioned identification of the torus with the cube. 

The normalized ground state wave function 
ON y (Xl' ... , xN ) for a system of N free bosons in a 
box of volume V is 

(2.25) 

The ground state n N y is a suitable cyclic vector 
with which to characterize the representation. Thus we 
obtain the ground state expectation functional 

(2.26) 

The functional L(f) in general determines not only 
the representation of U(f) but also that of V(I/I), at least 
up to a complex phase "multiplier".3 

Now it is not possible to take a limit of (2.25) as N 
and V become infinite, but we can obtain the limit of 
LN y (f) as N, V ---7 co, with N IV ---7 p. The constraint 
N /V ---7 p, where p denotes a constant average denSity, 
suggests the name "N Iv limit" for the procedure used 
here. 

Carrying out this procedure, 

L(f) == lim LN. y(f) 
N~Y-'i>oO 

N/V - if 

= lim (1+~ !d3x[et/W_1J)N 
N-oo N 

== exp[p I (e iJW 1)d3x). (2.27) 

C. Defining the representation 

The Gel 'fand-Vilenkin approach to the representation 
theory of nuclear Lie groups discusses (continuous) 



                                                                                                                                    

90 Goldin et al.: Nonrelativistic current algebra 

representations of Schwartz's space S in terms of mea­
sures on S/, the continuous dual of S. A functional L(f) 
is the Fourier transform of a cylindrical measure p. on 
S' , and thus defines a continuous representation of S, if 
and only if: 

(1) L(J) is continuous with respect to the topology of S, 

(2) L(O) = 1, and 

(3) L(f) is positive definite in the sense that 

m 

(2.28) 

Under these conditions, 

L(f) = J . ei(F,j) dp.(F), 
Fri'. $ 

(2.29) 

and the representation of S may be realized in the Hil­
bert space Je = L;(S') of p.-square integrable functions 
on S', with 

(U(f)-.JI)(F) = ei(F,J>-.JI(F) (2.30) 

for -.JI E L;(3'). Furthermore,O(F) == 1 is a cyclic vector 
for the representation. 

Therefore, we need to check that Eq. (2. 27) satisfies 
the above three conditions, and indeed defines a repre­
sentation of S. 

Theorem 1: The functional L(J) = exp [p J (ei/ UcL 1) 
d3x] is the Fourier transform of a cylindrical measure 
p. on S' ,and thus defines a continuous representation U 
of S, with a cyclic vector n such that L(f) = (O,u(f)n). 

Proof: (1) L(J) is continuous with respect to the 
usual topology of S; for if fj ~ f in S as j ~ 00 , then 
(eifj - 1) ~ (e il - 1) in S, and 

J (eifjUc) -1)d3x ~ J (e ilW _l)d3x. 

(2) L(O) = 1. 

(3) If all of the f10 '.:' ,f m in Eq. (2. 28) have compact 
support, then L;m k"l AkA j L(fj - f M) is the f.!./V limit of 
the sequence ofJPositive functionals L;jk=l AkAjLNY 
(fj - f k ), where V contains the union of ' the supports of 
fl' •••• f m • Therefore, Eq. (2. 28) holds for functions of 
compact support. But any f10 ... ,f m E S can be approxi­
mated arbitrarily closely in S by Coo functions of com­
pact support. Since L(f) is continuous, Eq. (2.28) holds 
for all f l , ••• '! m E S. QED 

Next we shall explicitly display the representation 
U(f) defined by the functional L(f) above.13 

Let Je be the Fock space of a second-quantized canoni­
cal nonrelativistic Bose field I/I(x) satisfying Eq. (2.1). 

Let 

1/1' (x) = I/I(x) + ";p, 

1/1' * (x) = 1/1 * (x) + ..;p. 
(2.31) 

Then 1/1' and 1/1' * also satisfy canonical commutation 
relations. The corresponding density is 

pi (x) == 1/1' * (x) 1/1' (x), 

and [p'(f),p'(g)J = o. 
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Theorem 2: With p'(X) defined in Fock space by 
Eq. (2. 32), a representation U F(f) = eip'(f) is obtained 
for S. The subscript F stands for Fock. The original 
Fock no-particle state OF E Je is cyclic for this repre­
sentation, and defines an expectation functional 
(OF,UF(f)OF) = exp[p J(eil(x)- l)d3x). 

Proof: First let us write p' (f) in terms of the 
original canonical fields: 

p'(f) == p(f) + .0 J f(x)d3x + pl/21/1*(f) + p1/21/1(f), 
(2.33) 

where p(f) is defined in Eq. (2.4). It is clear that 0 p 
is a cyclic vector for the polynomial algebra of opera­
tors generated by the identity and the pi (f), f E S. In 
fact, for a vector >It which is an element of tB:;=o Je n in 
X, p' (J) >It E tB~:li Xn in X, with (p' (J) -.JI) N+1 = p1/21/1* 
(f) -.JI fl' Thus, by the properties of the creation operators 
1/I*(fJ which follow from Eq. (2. 3), if tB~=o Je n is con­
tained in the closed cyclic subspace generated by apply­
ing polynomials in the p'(f) to OF,tB~:5 Je n islikewisein 
that subspace. By induction onN,nF is a cyclic vector 
for the representation. 

Next we show that 0 F is an analytic vector for p' (f). 
In fact, from Eq. (2. 33), it is certainly true that for 
-.JI E tB;:~o Je n in Je, 

II p'(f) -.vII $ 4(1 + N)(1 + .0)( 11!1I00 + If f(x)d 3x I )I!-.JIII, 
(2.34) 

where II flloo = sUPxE IR3If(x)l. Thus L;;~O(tNIN!)lIp' 
(f)NOF II is bounded by .0~=o eN/N(N + 1) where e is 
a constant, and converges for sufficiently small t. Simi­
larly, all elements of tB;:=oXn are analytic vectors for 
p' (f), for arbitrary N. Having identified a common 
dense domain of analytic vectors for the p'(f), we can 
now conclude the existence of a unitary representation 
UF(f) = eip'(f) in Je with UF(f) UF (g) = UF(f + g). 

The cyclicity of OF for the UF(f) follows immediately 
from the fact that for -.JI in the domain of p'(f), (l/it) 
[UF(tf)-.JI - -.JI] ~ p'(f)"-.Jt as t ~ O. 

Finally, it remains for us to eValuate (n F' UF(f)O F)' 
Define the operator-valued distribution 

A(f) = .0 J f(x)d3x + pl/21/1*(f). (2.35) 

Then 

P'(f)OF =A(f)OF' (2.36) 

and a simple calculation shows that 

[p'(f),A(g)] = A(fg). (2.37) 

Hence 
«> 

eiP'(f)A(g)e-ip'(f) = L; ~ [adnp'(f)JA(g) = A (eifg), 
n~O n! (2.38) 

where 

(adX)Y = (X,Y]. (2.39) 

Now with L(f) = (OF,UF(f)n F), 

~ :t L(tf) == (OF,eitP'U)p'(f)Op) 

= (n"eitP'(f)A{!)OF) = (OF,A(eit/f)eitp'U)OF) 

= (A*(eittf)OF,eitP'U)O,) = Ii J eitfWf(x)d3x L(t!). 

(2.40) 
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This differential equation in t, when supplemented with 
the boundary condition L(O) = 1, has the unique solution 

L(tt) =: exp [p J (e itl W - 1) d 3x]. (2.41) 
QED 

Using the "functional derivative" to be introduced in 
Sec. 4, Eq. (2.40) may be written 

.!.- oL(f) =: pei/ W L(f). (2.42) 
i of (x) 

We have shown that Eq. (2. 27) defines a representation 
of S, the normal subgroup of the semidirect product, and 
have displayed the representation. Next we show that the 
full group S /\ X can be represented in the same Hilbert 
space. 

The first step is to anticipate the form of the func­
tional E(f,tI') = (n, U(f) V(tI')n) by taking another NIV 
limit. Again in the N -particle Fock representation in 
volume V, 

EN, v(f,tI') 

= (n N, v' UN, V (f) VN , v (1/1) n N, v) 

=: J d 3x1 ••• d 3xN (~t exp ~ E. f(Xj~C~l ~~(~)y/~ 
where (2.43) 

a,(x) = det '01/1" (x) (2.44) 
ax! 

is the Jacobian referred to in Eq. (2.24). Then 

E(f,1/I) = lim E N.v (f,1/I) 
N, v-oo 
N/V~p 

exp{p J[e ifW..ja,(x)-1]d3x}. (2.45) 

A functional E on a topological group G defines a con­
tinuous representation of G, if and only if14: 

(1) E is continuous, 
(2) E(l) =: 1, and 

m 

(3) 6 'A"Aj E(g/,lg.) ~ 0 
j. k=l J 

('rtgV ••. ,gm EG,A1 , ... ,A m E Q:'). (2.46) 

Now we are ready to prove the next result. 

Theorem 3: There exists a representation U(t) V(1/I) 
of S A X in a Hilbert space :Ie, with a cyclic vector 
n E :Ie, such that E(f, 1/1) = (n, U(f) V(1/I) n) is given by 
Eq.(2.45). 

PrOOf: We shall show that conditions (1)-(3) above 
are satisfied by E (f , tI') . 
(1) It is necessary to introduce a more careful defini­
tion of X.15 Let Xo be the group of all Coo diffeomor­
phisms from R 3 onto R 3, having compact support. We 
topologize Xo by means of the countable family of met­
rics 

n = 0,1,2, .,. (2.47) 

for qJ,1/I E X o, where (m) = (m!> m 2, m 3 ), I m 1= 6;=1 mh' 
and qJ (m) (x) = a 1m I qJ(x)/(ax1) ml (ilx2) m2 ('Ox3) m3. X is 
the completion of Xo with respect to this topology. The 
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topology has a countable basis of neighborhoods of each 
element of X, and is metrizable. The group operations 
are continuous. X contains diffeomorphisms which are 
not of compact support, but which suitably approximate 
the identity mapping as I x I -7 00. 

Omitting the computations, it follows. that if fj -7 f in 
S andJh -7 tI' in X as k,j -7 00, then (e 1f.J..f3; - 1) -7 

(eif..fff; - 1) in S, and " 

J[eiJjW..ja,/?(x) - 1Jd3x -7 J[eifW..ja,(x) - 1Jd3x. 

Thus E(f, 1/1) is continuous. 

(2) Clearly E(O, 1) = 1. 
(3) As in the proof of Theorem 1, choose first the ele­
ments (f1' 1/11)' .•• , (f m' 1/Im) to have compact support. 
Then with 

(f k ,tI' kt1 (fp 1/Ij ) = (- f k 0 1/11, tl'1 ) (fp 1/1) 
=: ([fj - f k ] 0 tI'-l, 1/Ij 0 1/1/,1), 

the expression 
m 

6 AkAjE([jj -fk] 0 1/I;1,l/Ij o tI';;l) 
j. h=l 

is the limit of the sequence 
m 

j:--:=l XhAjEN. y([jj - f h] 0 tI'/,l,tI'j 01/l:?) 

(2.48) 

(2.49) 

(2.50) 

as N, V -7 00 with N IV -7 15, where the volume V con­
tains the union of all of the supports of fl' •.• , f m and 
1/11"" ,1/1".. But Eq. (2. 50) is positive since E N.V is 
defined in the N -particle Fock representation in volume 
V by Eq. (2.43). 

Therefore Eq. (2. 49) is positive for elements of S A J( 

which have compact support. But any element of S /\ X 
can be apprOximated arbitrarily closely by elements 
having compact support, due to the definition of J{ as 
the completion of Xo' Since E(f,I/I) is continuous, Eq. 
(2.49) is positive for all elements of SAX. QED 

Thus there exists a continuous representation 
U(f)V(I/I) of S AX in a Hilbert space:Ie, with n E :Ie 
cyclic for the U(f) V(1/I) , such that 

E(f,1/I) = (n, U(f) V(1/I) n). (2. 51) 

The next step is to show that n is a cyclic vector for 
the subgroup {U(f)}. We shall use the following lemma, 
omitting the proof which is not difficult.16 

Lemma 1: Let U(t) = e itA be a continuous one­
parameter unitary group in :Ie with A self-adjoint; let 
'Ii E :Ie and let f(t) = ('Ii, U(t) 'Ii) be an entire analytic 
function of t. Then 'Ii is an entire analytic vector for 
A; Le., the series 

(2.52) 

is absolutely convergent for all t; and 'Ii is in the domain 
ofU(it). 

Theorem 4: In the representation of S A X defined 
by Eqs. (2.45) and (2. 51),n is cyclic for the {U(f)}. 

Proof' Let h E S. Then with U(h) = e i p (h) , Eq. 
(2.45) yields 

(n, U(th)n) = exp[p J (e ithW - 1)d3x] (2.53) 
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which is an entire analytic function of t. Therefore by 
Lemma 1, n is in the domain of e p (h). e p (h) 0 is of 
course in the closed cyclic subspace generated by the 
{U(f)O}. 

But it can be shown that V(lIt) 0 = e P(lIl 0, where 
h(x) = In.J 8~(x). In fact, 

II V(lIt) 0 - eP(hlO 112 

= 1 - (0, U(- ih) V(lIt) 0) - (0, V(lIt-1) U(- ih) 0) 

+ (n,U(- 2ih)0) 

= 1- exp{p J [ehW.J8~(x) - l]d3x} 

- exp{p J [ellO .-lW.J8~-1(X) - l]d3x} 

+ exp[p J(e 2110c) -1)d3x] 

= 0, (2.54) 

after some manipulation of the Jacobians. Thus 0 is 
cyclic for the {U(f)}. QED 

Now we are ready to represent the full group S /\ X in 
the Fock space of Theorem 2. 

Theorem 5: With 1/1' (x) = I/I(x) + p1/2 as in Eq. 
(2.31), with pi (x) given by Eq. (2.32), and with 

J'(x) = (1/2i)[l/1' * (x)V' 1/1 I (x) - (V'I/I'*(x»1/1' (x)] (2.55) 

in the Fock space of the nonrelativistic canonical Bose 
field 1/1 (x) , there exists a continuous unitary representa­
tion U F (f) V F (lit) of the group S /\ Je such that 

UF(f) = eip'(f) 

and 
(2.56) 

(2.57) 

Then with 0 F E JC the original Fock vacuum state for 
1/1 (x) , 

E(f,lIt) = (OF,UF(f)VF(I/I)OF) 

where E(f,lIt) is given by Eq. (2.45). 

(2.58) 

Proof: First we assert that the representation of 
S /\ Je obtained in Theorem 3 can be mapped unitarily 
into the Fock Hilbert space. 

Let 0 -7 OF and U(f)O -7 UF(f)OF' where OF and 
UF(f) are as in Theorem 2. Since by Theorem 4,0 is 
cyclic for the U(f), this mapping defines a unitary rep­
resentation not only of S but of S /\ Je in the Fock Hilbert 
space; we may write V(lIt) -7 V F (lJI), and 

E(f,I/I) = (OF,UF(f) VF(lIt) OF)' 

It remains only to show that JI (g) as defined by Eq. 
(2.55) is indeed the infinitesimal generator of the one­
parameter unitary group VF(fP t

g ). By Stone's theorem, 
it is sufficient to show that 

lim V F(fPt
g

) - I OF == J'(g)OF; 
t-O it 

(2.59) 

the result then follows from the fact that p'(f) and J'(g) 
satisfy the correct algebra of commutation relations on 
the domain of polynomials in the p'(f) applied to OJ<," 

Now by Eq. (2. 55), 

J'(g)OF == (1/2i)p'(V· g)Op (2.60) 
and 
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strated. QED 

To summarize, we have obtained a representation of 
the group S /\ Je, the exponentiated nonrelativistic current 
algebra, in the N /V limit. This was done by means of 
the expectation functional E(f,lJI). The representation 
thus obtained was shown to be unitarily equivalent to an 
explicit representation of the current commutators in 
a certain Fock space, with the original Fock ground 
state being the cyclic vector defining the functional 
E(f, 1/1). 

In the next section we show how a condition on the 
cyclic vector which asserts that it is the physical 
ground state of an infinite free Bose gas uniquely deter­
mines the class of representations obtained above; 
namely those defined by E(f, lit) for an arbitrarily speci­
fied average particle density is. 

3. A CONDITION ON THE GROUND STATE 

In this section we study representations of the cur­
rent algebra, Eqs. (2.11)-(2.13), in which there exists 
a cyclic vector 0 0 satisfying the condition 

[2iJ(x) + (V'p)(x)] 0 0 == o. (3.1) 

0 0 will usually be interpreted as the ground state of the 
system. 

Convincing heuristic arguments that Eq. (3.1) deter­
mines the ground state of a noninteracting Bose gas 
have been given.ll.17-19 Here we shall explore the 
consequences of this constraint somewhat more sys­
tematically. We show that for a system in a box'with 
periodic boundary conditions, Eq. (3.1) implies that the 
operator J p(x)d3x has integer eigenvalues. In Sec. 2 we 
saw that the expectation functional (Oo,eip(J)Oo) is 
given by Eq. (2. 27) in the N /V limit. In this section 
we show not only that Eq. (2. 27) determines a repre­
sentation satisfying the constraint (3.1), as has been 
previously indicated,19 but that it defines the unique 
class of representations having this property. 

Let us investigate the consequences of Eq. (3.1) on 
the functional 

(3.2) 

where 0 0 is a cyclic vector in a representation of the 
current algebra, satisfying the condition 

(3.3) 

for all real vector functions g with components in S. 
Naturally, we shall assume that 0 0 is in the domain of 
the operators J(g) and p(f) for all f, g E S. Actually, 
for the sake of mathematical rigor we shall assume 
slightly more. We suppose in addition that the bilinear 
form (P(fl)00,p(f2)n O) is continuous in f1 and f 2; 
i.e., if f ln -7 f1 in S,then (p(fln)00,p(f2 )00)-7 
(p(fl)n g,p(f2) 0 0), and similarly for 12 , It then follows 
that II ptfn ) 0 0 112 -70 if fn -70 as n -7 00. This assump­
tion is slightly stronger than assuming continuity of the 
group representation U(f). It follows readily that L(f) 
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is continuous in f; Le., if fn ~ f in S, then L(jn) ~ L(f). 
In fact, 

!L(fn) - L(f) 1== I(n o' (eip(jn) - eip(j J)n o) I 

== I (e- ip (j)r1 o, (eip(f,.- j) - I)n o) I 

:s II e-ip(j )no II ·11 (eip(J" - j) - I)no II 

:s l·lIp(j,.-f)noll~o 

as fn ~ f. 

For the case of a system in a "box" with periodic 
boundary conditions, assume that Eq. (3. 3) holds for all 
infinitely differentiable periodic vector functions g. The 
components of such functions will be said to be in S y' 

where S y has the topology of a nuclear space. 

Using Eq. (3.3), we derive a functional equation for 
L(f) as follows. We have 

d~ L(j + tVo g) toO == i(n o' e i p (j )p(V 0 g) 00)' 

whence it follows using Eq. (3. 3) that 

d~ L(j+ tVog)toO == - 2(n o,e ip (J)J(g)n o)' 

Similarly, 

:t L(f + tVo g)t=o == i(no,p(Vo g) eiPlJ)n o) 

== i(p(Vo g) no' e i p (J )n o) 

== 2(J(g) no, e i p(J)n o) 

== 2(n o,J(g) e i p(J)n o)' 

Combining Eqs. (3.4) and (3.5), we have 

:, L(f + tVo g) toO == (n o. [J(g) , e i p (J) Jn o)' 

(3.4) 

(3.5) 

(3.6) 

Now it follows from the current commutation relations 
that 

eip(J)J(g)e-iP(J) == J(g) - peg °Vf). (3.7) 

Combining Eqs. (3. 6) and (3.7), 

d 
dt L(f + tVo g)t 00 

== (no, [J(g) - e i p(j) J(g) e- i p (J)] e i p If )no) 

== (no,p(g oVf) eip(J )no) 

==-i:t L(j+tgoVf)too' (3.8) 

This equation can also be written in the form 

for all f, g E S or for all (periodic, infinitely differen­
tiable) f, g E S y for a system in a "box". 

Thus we have obtained a functional equation for L(f) 
from the original condition on the ground state no' 

Next we shall show that Eq. (3. 8) or (3.9) implies that 
L(f) must be of the form 

L(f) == F(K(f), 

where 
K(f) == j(e ifW -1)d3x 

and F(z) is a holomorphic function of the complex 
variable z in the interior of the range of K(f). 
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In order to prove this result we will need the follow­
ing two lemmas. We say that the mapping t ~ g t of the 
interval [0, 1J into S (respectively Sy) is a differentiable 
mapping of [0, 1J into S (resp. Sy) with derivative 
dg tldt == k t E S (resp. Sy) if for each t E [(), 1] we have 
that h-1 (g t+h - g t) ~ k t as h ~ 0; where the conver­
gence is in the topology of S (resp. Sy). 

Lemma 2: Suppose that t ~ gt E S (resp. Sy) for 
o :s t :s 1 is a differentiable mapping of [0, 1] into S 
(resp. Sy)' Furthermore, suppose that 

(3.11) 

that L(f) :::: (no,eip(f)n o) satisfies (3.8) or equivalently 
(3.9); and that L(f) is continuous in f with respect to 
the topology of S (resp. Sy), Then L(gt) is a constant 
independent of t. 

Proof: We shall prove the lemma by showing that 
(dldt)L(gt) == O. Let k t == dgt/dt. We begin by showing 
that 

d~ L(gt) = i(no,eiP(Kt) p(kt)n o)' 

Now we have 

h-1 [L(gt+h) - L(gt)] 

== h-1(n
o

, (eip(gt+hJ - eiP(gt»n
o

) 

(3. 12) 

== h-l(no,eiP(gt)(eiP(et+h-gt-hkt) eihp(kt) - I)no) 

== h-l(no,eip(et) eip(gt+h-gt-hkt)(eihp(kt) - I)n
o

) 

+ h-l(no,eiP(gt)(eiP(gt+h-et-hkt) - I)n
o
)' (3.13) 

Estimating the second term in Eq. (3. 13) as h ~ 0, 
we find that 

I h-l(no,eiPlgt)(eiP(gt+h-gt-hktJ - I)n
o

) I 

:s "e-iP(gt) no" "h-l(eip(gt+h-gt-hkt) - I)n o " 

:s 1 . " P (g t + h ; g t _ k ~ no" ~ 0 as h ~ 0, 

since h-1 (gt+h - gt) - k t ~ 0 in S (resp. Sy) as h ~ O. 
Hence, we have 

lim h-1 [L(gt+h) - L(gt)] 

== lim e-'P(Kt)e-'P(Kt+h-gt-hkt) no, e - no h-> 0 ~ .. ( ,hp (k t) I) ) 

h->O h 

== i(no,eiP(gt) p(k t )n o)' (3.14) 

Therefore, L(g t) is differentiable and 

dL(gt)== i(n eip(gt)p(k)n) 
dt 0' to, 

wherek t ==dgtldt. 

Next we show that Eq. (3.11) implies 

(no,eip(gt) p(kt)n o) == o. 

Let T be the tempered distribution defined by 

T(f) == (no, eip(g)p(f)no)' 

From Eq. (3.9) we have 

T(Y" h + zh' Y'g) = 0 

(3.15) 

(3.16) 

(3. 17) 

(3.18) 
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for f , h E S (resp. S y)' Let T g be the distribution de­
fined by 

(3.19) 

for g E S (resp. Sy). Then we have 

T g ('\1 • f) = T(e-;g'\1 • f) 

== T(V • (e- ig f) + ie- ig f· Vg) == 0 (3.20) 

by Eq. (3. 18). Hence, 

'\1Tg (x) = 0 and Tg(x) = cg , 

where C g is a constant depending on g. Thus from Eq. 
(3.19) we have 

T(x) = cgeig()t). (3.21) 

From Eq. (3.11), 

:t J (e iKt ()t)_1)d3x::= i Jkt(x)eiKtUc)d3x::= O. (3.22) 

Therefore, by Eqs. (3. 21) and (3.15), 

d L ( ) .( i P (K t) (k) ) dt gt=lfJo,e PtfJO 

::= iT(k t ) = O. QED 

The proof of the next lemma is extremely technical; 
therefore we shall present a mere sketch for the infinite­
volume case in the Appendix. 

Lemma 3: Suppose gl,g2 E S (resp. Sy) and 

j(eig1(x) _1)d3x = j(eigzW_1)d3x. (3.23) 

Then for any two neighborhoods N 1 of gl and N 2 of 
g 2 in S (resp. S y), there exist functions h1 E N 1 and 
h2 E N 2' and a continuous mapping t -7 f t of [0,1] into 
S (resp. Sy), differentiable in the open interval (0,1), 
such that fo::= h1,f1 ::= h2 and 

J (e iftW - 1)d3x = a constant. 

This lemma is easy to prove if f t is permitted to be 
complex. The requirement that f t be real for 0 :s t :s 1 
complicates the proof considerably. 

Proof: See Appendix. 

Theorem 6: Suppose that L(g) = (Uo,eip(g)fJ o)' 
defined for all real g E S (resp. S v), is continuous in g 
with respect to the topology of S (resp. Sy). Further­
more, suppose that L(g) satisfies Eq. (3. 8) or equiva­
lently Eq. (3.9). Then L(g) is of the form 

L(g) ::= F(K(g)), 

whereK(g)::= J(e igW -1)d3x and where F(z) is a 
holomorphic function of the complex variable z in the 
interior of the range of K(g). 

Proof: First we show that if gl,g2 E S (resp. Sv) 
and 

J (e iK1W - 1)d3x::= J (e iK2(x) - 1)d3x, 

then L(gl) = L(g2)' Suppose E > O. Since L(g) is con­
tinuous in g there are neighborhoods N 1 of gland N 2 

of g2 in S(resp. Sy) such that 
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I L(gl) - L(h1) I < E/2 

I L(g2) - L(h2) I < E/2 

for all h1 E N 1 , 

for all h2 E N 2 • 
(3.24) 

From Lemma 3 it follows that there exist functions 
k lEN 1 and k2 E N 2 and a continuous mapping t -7 it of 
[0,1] into S (resp. S v), differentiable in (0, 1), such that 
fo == kl,fl == k2 and 

J (e iftW - 1)d3x = a constant. 

Then, by Lemma 2, we have that L(k ) ::= L(k ). By the 
inequality (3.24), it followS that I L(gl.~ - L(gj I < E. 

Since E>O is arbitrary,L(gl)::= L(g2)' Hence,L(g) 
depends only on the number 

K(g) = j (e iKW _ 1)d3x. 

Thus we have L(g) = F(K(g)) , where F(z) is a complex 
function defined on the range of K(g) for all g E S (resp. 
Sv)' We note that for S we have that the range of K(g) 
is {z;Rez < 0 or z = O}, while for Sy, the range of K(g) 
is {z; I z + V I :s V}. Next we show that F(z) is differ­
entiable for z in the interior of the range of K(g). 

If K(gl) is a point in the interior of the range of K(g), 
then gl is not a constant function. Then there are real 
functions h1 and h2 which have the property that, as the 
point (t 1, t 2) runs over a two- dimensional neighborhood 
of (0, O),K(gl + t1 hI + t 2h2) runs over a complex 
neighborhood of K(g). The mapping (t l , t 2) -7 K(g + 
tlhl + t2h2) is analytic in t1 and t 2 ,and since L(gi + 
t1 hl + t 2h2) is differentiable in t1 and til' it follows 
from the continuity assumptions on L(g) that F(z) is 
differentiable in a neighborhood of K(gl)' Hence F(z) 
is differentiable in the interior of the range of K (g). 
Since L(g) is continuous ing, it follows that F(z) is 
continuous on the whole range of K(g). 

Next we show that F(z) is holomorphic for z in the 
interior of the range of K(g). To prove this it is suffi­
c ient to show that 

a: F(u + iv) == - i :v F(u + iv) 

for z = u + iv in the interior of the range of K(g). 
Since F(z) is differentiable, we have 

d
dt L(g + th) I ::= ilF(K(g)) ~ {Re[K(g + th)J} I 

toO au at t~O 

+ aF(K(g» ~ {Im[K(g + th)]} I 
av at toO 

== - ilF(K(g)) J h(x) sing(x)dx3 
ilu 

+ ilF(K(g» j h(x) cosg(x) d3x. 
ilv (3.25) 

Then from Eq. (3. 8) we obtain 

- ilF(K(g» J ~. f)(x) sing (x) d 3x 
au 

+ ilF(K(g» J ('\1 • f)(x) cosg(x) d 3x 
ilv 

+ i ilF(K (g» j (f. '\1 g)(x) sing(x) d3x 
ilu 

+ i aF(K(g)) J (f ''\1g)(x) cosg(x) d3x = O. 
ilv 

(3.26) 

From the divergence theorem, we obtain the relation­
ships 

J ('\1 • f)(x) sing(x) d 3x ::= - j (f • '\1 g)(x) cosg(x) d 3x, 
(3.27) 

J ('\1 • f)(x) cosg(x) d3x = J (f • '\1 g)(x) sing(x) d3x • 
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Combining (3.26) and (3.27) we find 

(
OF(K(g» + i OF(K(g») J (V 0 f)(x) e-igW d 3x = 0. 

au ov 
If g is not a constant, one can find an f with compo­

nents in S (resp. S y) such that 

J (V of)(x) e-igCx) d 3x '" o. 

Hence, aF/au = - i(aF/av), and F(z) is holomorphic 
for z in the interior of the range of K(g). This com-
pletes the proof of the theorem. QED 

Next we shall determine the explicit form of L(f) = 
(0 0 , eip(f) ( 0 ) under the further assumption that 
U(f) V(I/I) determines a factor representation of the 
current algebra. The importance of factor representa­
tions lies in the fact that every representation of a C*­
algebra (in particular, the C*-algebra associated with 
currents) can be uniquely decomposed into a direct in­
tegral of factor representations.2o Roughly speaking, 
if one knows all of the factor representations of a C*­
algebra, one can construct all representations by taking 
direct integrals. 

Suppose we have a continuous unitary representation 
of S /\ Je. We denote by U the *-algebra of polynomials 
in U(f) and V(I/I),withf E S andl/lE Je,andby U' the 
commutant of U, Le., the set of all bounded operators 
which commute with the elements of U. Finally, we de­
note by 11" the bicommutant of U, Le., the commutant 
of H'. It follows from a theorem of von Neumann21 that 
U" is the strong closure of U, Le., for A E U" and any 
finite set of vectors {>Ji i ; i = 1, .•. , n} in the Hilbert 
space of the representation, and for EO > 0, there exists 
aBE U such that II (A - B) >Ji i II < EO. The represen­
tation U(f) V(I/I) is said to be a factor representation if 
U' n U" = {A I}; Le., if the only operators common to 
both U' and U" are multiples of the identity. Every irre­
ducible representation of the current algebra is a factor 
representation, since for irreducible representations 
H' = {U}. 

Let us turn to the question of determining L(g) = 
(no, eip(g) no) for a factor representation with a vector 
no satisfying Eq. (3.1) or equivalently Eq. (3. 3). 

We begin with the case of a system in a box. Since 
the function eo(x) == 1 is in Sy, we can consider the 
operator U(Ae o) = exp[iAp(eo)]. Since U(Ae o) commutes 
with U(f) V(I/I) for all (f,I/I) E S /\ Je, U(Ae o) is in the 
center of the current algebra. Then for a factor repre­
sentation we must have U (Ae 0) = W (A) I, where I W (A) I = 1. 
By the group property and by Stone's theorem, we then 
have exp[iAp(eo)] = exp[iAQ]I,and p(eo) = QI,where 
Q is to be interpreted as the total number of particles 
in the system. But we have already seen that L(g) = 
F(K(g» where F(z) is analytic for I z + V I < V and 
continuous for I z + V I :5 V. 

Now we have 

F(K(Ae o» = F(Ve i A - V) = ei Q A. (3.28) 

Since F is single-valued,F(Ve iA - V) = F(Vei(A+2 1r >_ 
V). Hence e i 21TQ = 1 and Q = 0, ± 1, ± 2, .. '. If F(z) is 
to be holomorphic for I z + V I < V we must have 
Q = 0,1,2, ... ; hence it follows that F(z) is of the form 

(
z + V)Q F(z) = -V- , Q = 0,1,2,··· . (3.29) 

Therefore, 

L(f) = (J e iJW d 3x)Q. 
y 

(3.30) 
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Every representation of the current algebra can be 
expressed as a direct integral of factor representations; 
thus for an arbitrary representation of the current alge­
bra in a box with the ground state satisfying Eq. (3.1) or 
(3.3), L(f) is of the form 

00 

L(f) = L; /J. (J e i JW d 3x)Q , (3.31) 
Q=O Q y 

with Q = 0,1,2, ..• , /J.Q 2: 0, and L;;o /J.Q = 1. 

Next we determine the form of L(f) for the case of 
infinite volume. Again we assume that we have a factor 
representation, and obtain the general case by taking a 
direct integral of factor representations. 

Consider the expression 

(3.32) 

where f1 E S; f;(x) = f 2(x - na) for n = 0,1,2, ... and 
f2 E S; and where a is a vector of unit length. 

Now we have 

and 

K(f1 + fi) = J (eihWeij2.~-na) - l)d3x 

~ K(f1) + K(f2) as n ~ IX). (3.33) 

Since F is continuous we have 

Now the set of all operators of norm not greater than 
one in a Hilbert space (Le., the unit ball) is compact in 
the weak operator topology. Therefore, the sequence 
e

ip
(f2

n
) has at least one cluster point in the weak opera­

tor topology which we shall call G. Since 
[e iJ (g), e iP(f:>] ~ 0 strongly as n ~ IX) (I.e., the eipU~) 
tend to commute with elements of the current algebra 
as n ~ IX), it follows that G is in the commutant of the 
current algebra. Since G is a cluster point of a sequence 
of elements of the current algebra, G is also in the weak 
closure of the current algebra. Henc::e, by the assump­
tion of a factor representation G is a multiple of the 
identity, Le., G = H. 

Since we have the existence of the limit 

and since 

L(f;) = F(K(f2» for all n, 

it follows from Eq. (3. 32) that 

L(f1 + f 2) ~ AL(f1) as n ~ IX) 

and 

L(f;) = A. 

Combining these equations, we find 

(3.34) 

(3.35) 

and it follows that F(z) is of the form F(z) = A exp{pz}. 
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Since F(O) = 1 we have A = 1 and since I L(f) I = 
, F(K(f» I :s 1 for all f E 3, we have I F(z) , :s 1 for 
all z with Re{z} :s O. Hence p ~ 0 and F(z) = exp{pz}. 
Thus 

L(f) = exp p I (e ifW - 1)d3x. (3.36) 

For the general case of a representation with ground 
state satisfying Eq. (3.1) or (3.3), L(f) is a direct integ­
ral of functionals of the above form, i.e., 

L(f) = 1000 

exp [,0 I (ei/(x) - 1)d3x]dlL(P), (3.37) 

where IL is a positive measure on [0,00) normalized so 
that faCIO dlL (p) = 1. 

We summarize these results as follows: 

Theorem 7: Suppose g ---7 J(g) and f ---7 p(f) is a 
*-representation of the nonrelativistic current algebra 
of Eqs. (2.11)-(2.13) with a cyclic vector no' Suppose 
no is in the domain of p(f) and J(g) for all f, g E 3, and 
that (p(f1)n O,p(f2)nO) is a continuous bilinear form on 
S x S (resp. Sv x Sv)' Finally, suppose that 

2iJ(g) no = p('V • g) n 0 (3.3) 

for all g with components in S (resp. Sv). Then if 
L(f) = (no, eip(f)n o), L(f) is of the form 

00 

L(f) = Q~ ILQ ( Iv e i / W d 3x)Q (3.31) 

in a box of volume V, and of the form 

(3.37) 

in the infinite volume case; where IL Q ~ 0 for Q = 0, 1, 
2, ... ,2:;;; 0 iJ.Q:: 1 and where iJ. is a positive measure 
on [0,00) normalized to unity. 

We remark that the form of L(f, g) = (no, eip(J) eiJ(g)no) 
is completely determined by the form of L(f) together 
with Eq. (3.3). 

Theorem 8: Representations corresponding to 
Eq. (3. 30) and Eq. (3. 36) respectively are irreducible. 

Proof: Supposing the contrary, there exists a 
closed invariant subspace ~ of JC with U(f)~ S ~, 
V(1I-')mt S ~; and we can decompose no into 
A1/2 n 1 + (1- A)1/2 n 2 with n 1 E ~,n2 E ~l., 
0< A < 1. Then U(f) n 2 and V(1I-') n 2 are likewise in 
~l.. Since n<\ is a cyclic vector for the U(f), it follows 
that {U(D n1l generates a dense subspace of ~,and 
{u(f)n 2} a dense subspace of ~l.. Furthermore,n1 
and n 2 are in the domains of p(f) and J(g) by Stone's 
theorem,with p(f)n1 Emt,p(f)n 2 E ~.L,etc. Since 
IIp(f )n o 112 ---70 if fn ---70 as n ---7 00, II p(fn)n l I1 2 ---70 
and ,r p(fn)n2 11 2 ---70, whence (p(f1)n 1, p(f2)n1) and 
(p(fl)n 2, p(f2)n 2) are continuous in f1 and f 2• Evi­
dently, 2iJ(g) n 1 = p('V. g) n 1 and Similarly for n 2• 

Thus the functionals L 1(f) = (nl>U(f)n 1) and 
L 2(f) = (n 2, U(f)n 2) satisfy all of the assumptions 
made earlier in this section, with L(f) = ALl (f) + 
(1 - A) L 2(f). Consequently, L1 and L2 must each be 
of the form of Eq. (3. 31) or (3.37), which is impossible 
unless Ll = L2 = L. Therefore the representations are 
irreducible. QED 

4. FUNCTIONAL CALCULUS 

We have shown that in order to describe a free Bose 
gas at zero temperature, one takes a representation of 
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making the assumption that the expectation functional 
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differential equation.19 In fact, with 
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K(x) ='Vp(x) + 2iJ(x) (4.1) 

and 
(no,eip(f)K(x)n o) = 0, 

together with the commutation relation 

[e i p (f), K(x)] = - 2i'Vf(x) p(x) eip(f), 

one easily obtains 

(4.2) 

(4.3) 

- tVf(x) (no, eip(f)p(x) no) + (no,'Vp(x)eiP(f)no)=o, 
(4.4) 

which is the unsmeared form of Eq. (3. 9). 

Equation (4.4) may be rewritten as a functional dif­
ferential equation as follows. We use the standard 
notation for functional derivatives. If L(f) is a con­
tinuous functional on Schwartz's space 3, we say L has 
a functional derivative at f if there is a tempered dis­
tribution T / (x) such that 

lim L(f + tg) - L(f) = T (g). (4.5) 
t ... o t / 

We denote the functional derivative by 

15L(f) = T (x) 
15f(x) /. 

(4.6) 

It is a consequence of the assumptions we made on 
L(f) in the beginning of Sec. 3 that L has a functional 
derivative at all f E S, and 

15L(f) = i(n eip(f)p(x)n). (4.7) 
15f(x) , 

Higher functional derivatives are defined in exactly 
the same fashion. 

In this notation, Eq. (4. 4) reads 

_ i['V f(x)] 15L(f) + 'V 15L(f) = O. 
15f(x) x 15f(x) 

(4.8) 

A unique solution to Eq. (4. 8) is determined when the 
following boundary conditions are imposed on L(f): 

(i) L(f) is a positive functional in the Bochner sense, 
Eq, (2.28). This condition is a consequence of the inter­
pretation of L(f) as an inner product in a Hilbert space 
of positive norm. It establishes that the measures iJ.Q 

and IL(P) appearing in Eqs. (3. 31) and (3.37) are positive. 

(ii) L(O) = 1. This condition normalizes the inner pro­
duct to one. 

(iii) I L(f) I :s 1. This is a consequence of the unitarity 
of U(f), Eq. (2.16). This condition g'J,arantees that the 
average density p appearing in Eqs. (3. 36) and (3.37) is 
a positive number. 

(iv) L(f) is an extremal solution in the sense that it 
cannot be written as a convex linear combination of two 
other solutions. 

(v) I5L I - 'f' d b -f( ) = p = a speCl Ie num er. 
15 x f;O 

Conditions (i)- (iii) were employed to prove Theorem 
7, which implies that Eq, (4.8) has the unique class of 
solutions specified by Eqs. (3. 31) or (3.37). Condition 
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(iv), as demonstrated in Theorem 8), is used to res­
trict the general solution to the forms (3. 30) and (3. 36) 
defining irreducible representations of the algebra 
(2.11)-{2.13). Finally, condition (v) selects the particu­
lar irreducible representation corresponding to a physi­
cal system having a specified value for the average den­
sity. 

Having written a functional differential equation for 
L(f) whose solutions describe the infinite free Bose gas 
at a specified average density, it is natural to seek an 
equation or system of coupled equations whose solution 
would describe an infinite Bose gas with an interaction. 
Such a system is proposed in Sec. 5. 

In this section we derive a mathematical relation be­
tween two of the quantities which appear in Sec. 5. This 
relation proves helpful in completing the system of 
coupled equations, and introduces the concept of indefi­
nite functional integration. 

Define 

Rij{f,x,y) = (Oo,Kt{x)eip(f)Kj{y)Oo), (4.9) 

where K{x) = 'ilp{x) + 2iJ{x) is an operator-valued dis­
tribution, and 0 0 is a cyclic vector for the p{f). 

Consider the expression 

N[J·{f, x) = (no,K'!'{X)eiP(J) _1_ K.{X)Oo) 
, p{x) J 

(0 0, eip(f) Kt{x) p~x) Kj{X)Oo) 

- 2i{0 J) (x) (0 0 , eip(J )Kj(x) 0 0 ), (4.10) 

One way to define such an expression has previously 
been proposed.ll Here we shall, roughly speaking, func­
tionally integrate R ij to obtain N[j' 

In representations of nonrelativistic systems of phYSi­
cal interest one usually has that p{f) 2: 0 if f{x) 2: 0 for 
all x. This corresponds to the fact that p usually des­
cribes the number density for a single speCies of par­
ticle. Let us for the moment pretend that p{x) is a 
well-defined self-adjoint operator at each point X, with 
positive spectrum. 

Then we could write 

_1_ eip(f) = 1"" dt e-tp(;x) eip(f) = 1"" dt e ip (f+it 6x), 
p(x) 0 0 (4.11) 
where o",{Y) = o{x- y), the Dirac delta function. The re­
lation between Rij(f,x,y) and N[j{f,x) would be given 
by 

(4.12) 

Now in general p{x) is not well defined as an operator 
at a point, and an expression such as Ri .{f + ito"" x, x) 
is not well defined. In fact, let us compuie R i . for an 
infinite free Bose gas at zero temperature of itverage 
density p, with 0 0 the ground state. We have L(f) = 
(oo, eip(f)oo) given by Eq. (3. 36). Suppose that hE S 
andO h = eip(h)Oo' We shall compute R~h){f,x,y) with 
respect to the cyclic vector 0 h: J 

RW(f,x,y)::::: (Oh,K;{x)eiP(f)Kj{y)Oh) 

::::: (I{'{x) eip(h)oo, eip(j)K .(y) eiP(k)Oo) 
, J ·(4.13) 

From Eq. (4. 3) together with K i{X) 0 0 ::::: 0, we have 

(4.14) 
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or 
(4.15) 

Hence, 

RCf}{f,x,y) = 4(o;h)(x)(ojh)(Y)(00,e ip (f)p{x)p(y)00) 

= - 4{a i h)(x)(a j h){y) 02L(/). (4.16) 
of(x) of(y) 

A straightforward computation of the functional deri­
vatives yields 

RW{f,x,y) 

= 4(Oi h)(x)(oj h)(y) [p2 eif W eij (y) 

+ po(x - y) eijW] L{f). (4.17) 

It is clear that RW{f + ita"" x, x) is ill defined, since 
it contains exponentIals of d'elta functions, as well as a 
delta function evaluated at zero. 

Instead, we propose to interpret Eq. (4.11) as follows. 
Let 0; be a sequence of functions in S which converges 
to Ox in the sense of a distribution, i.e., for all f E S, 

lim I 0;{y)f(y)d3y = f(x). 
n .... "" 

We now interpret Eq. (4. 12) by means of the limiting 
procedure 

(4.18) 

We shall show that this definition works for the case 
of R~h? in Eq. {4. 17). Notice that R~hl{f,g,k) can be ex­
tended from functions f,g, k E S to bounded Borel func­
tions which decrease faster than any polynomial in x at 
infinity. Then we can take our apprOximating sequence 
for a delta function to be the more convenient set of 
functions 

if IXi -Yi I ~ 1/2n for i= 1,2,3 

otherwise. 

Computing R~hl {f + it6~, 0;, 6;), we find 

R (,.hJ)(f + 't" "n "n) t Vx' VlI.' Vx 

(4.19) 

= Al(t,n)L{f + ito;) + A 2(t,n)L{f + ito~), 
where 

= 4p2 J d3y Iv d3z n 6(0,. h)(y)(o. h)(z) 
v" n 1 

X eij(Y)eifWe-2tn3 

and 

A 2{t,n) = 4i5 IV
n 

d3y n6(oih)(y)(ojh)(y)eij(Y)e-tn3, 

and where Vn = {y; I Yi - Xi I~ 1/2nfor i = 1,2, 3}. A 
straightforward computation shows that 

I L{f + ito;) - L{f) I ~ 1 - e-p/n 3 

for all x E IR~, t 2: 0 and f E S. Hence, L{f + ito;) con­
verges uniformly to L{f) as n -7 00. Since A1 (t ,n) and 
A 2 (t,n) converge in the L1 topology to absolutely inte­
grable functions, it follows that 

lim Joo dt R~h){f + iton on on) 
o 'J "" x' x 

n .... "" = (lim 10"" [Al{t,n) +A2(t,n)]dt)L{f). (4.20) 
n .... co 

Now performing the integration over t, we have 
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foao A1 (t, n) dt 

=2jj n3JvdH v d3z(oih)(y)(o.h)(z)ei/(Y)eif(:z) ~ 0 
.'" n J (4.21) 

as n ~ 00, since the square of the volume of Vn goes as 
n-6 • Furthermore, 

Hence we have 

lim 10'" dtR/h)(f + itO~, 6~, 6~) 
n-HXJ J 

= 4p(Oih ) (x)(ojh)(y)ei/(x) L(f). (4.23) 

N ext we compute N if h) (f, x) directly, using the inter­
pretation of 1/ p(x) proposed earlier by Goldin and 
Sharp.l1 They interpret l/.p(x) as the map 1/ p(x): 
'D x 'D ~ S', where S' is the continuous dual of Sand 'D 
is the linear span of the vector-valued distributions 
{g(x) p(x) q, I q, E D,g E (') M} , with D a dense invariant 
domain for p(f), f E S, and (') M the real-valued Cao 
functions which together with aU derivatives are poly­
nomially bounded at 00. 

NOW, using Eq. (4.15) 

( oh,eiP(f)K;(X) _1_ K/x) 0,,\ = (~T{i(X)Oh-f' _1_ Kj(X)o) 
p(x) ~ '\ p(x) 

= 4((ojh- 0J)(x)p(x)Oh-f' _1_ (ojh)(x)P(X)Oh\ 
\ p(x) 1 

= 4(Ojh- iJ J)(x)(ojh)(x)(Oo,eip(J)p(x) 00)' (4.24) 

and 

NW'(f,x) = (oh,eiP(J)K:(X) _1_ Kj(x) 0 ... ) 
p(x) . 

- 2i(o;f)(x)(oh,e iP (J)Kj (x)Oh) 

= 4(iJ i h)(x)(o jh)(x) (0 0' e j p(j )p(x) 00) 

= - 4i(iJ i h)(x)(iJ jh)(x) 6L(f) 
6f(x} 

= 4p(ojh)(x)(iJ j h)(x}e ifW L(f}, (4.25) 

where L(f} is given by Eq. (3. 36) in evaluating the func­
tional derivative. Hence we see that Eq. (4.18) gives 
the correct relation betweenR jj and Nl j for the case 
at hand. We leave unanswered at this time the impor­
tant problem of determining a general set of sufficient 
conditions to be imposed on Rjj(f,x,y), in order to en­
sure that the limiting procedure of Eq. (4.18) leads to 
a well-defined expression. 

5. DETERMINING L(f) WHEN THE PARTICLES 
INTERACT 

The preceding work has shown how the functional 
L(f} of Eq. (3. 36), which determines an irreducible 
representation of the local current algebra (2.11)­
(2.13), can be defined uniquely as the solution to a 
functional differential equation satisfying the approp­
riate boundary conditions [conditions (i}-(v) following 
Eq. (4. 8)]. 

These results apply only to noninteracting bosons. 
Next we ask whether the same pattern of results per­
sists when interactions are included. Can one find a 
set of functional differential equations which, when 
supplemented with suitable boundary conditions, deter­
mine a ground state expectation functional L(f}? In 

J. Math. Phys., Vol. 15, No.1, January 1974 

this section we suggest the possibility of an affirma­
tive answer to this question. 

The functional equation which defined L(f} for non­
interacting bosons was Eq. (4. 8), obtained from the 
condition (3.1), 

K(x)Oo = ('Vp + 2iJ)(x)0 0 = O. 
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The first step towards deriving a corresponding set 
of functional equations in the interacting case is to find 
conditions replacing Eq. (3.1), since the latter correctly 
expresses the action of the Hamiltonian in a represen­
tation only for noninteracting bosons. These conditions 
take the form of equations which relate, and ultimately 
determine, the following quantities: 

L(f) = (Oo,ejP(J)oo), (5.1) 

M(f,x) = (Oo,eip(J)K(x)Oo), (5.2) 

Rij(f,x,y) = (oo,K;(x)eip(J)Kj(y)Oo), (5.3) 

Nij(f,x) 

= ~(Oo,eip(f) 1K:(x) _1_ K/X) + K;(x) _1_ Ki(x}loo\. 
\ [p(x) p(x} J ~ 

(5.4) 
We assume that the particles interact through a cen­

tral two-body potential V( I x - y I) and write the Hamil­
tonian (for particles of unit mass) as1 

H=t f d3xK:(x)_I_ Kj(x) 
p(x) 

+ ~ f J d 3x d3y p(x) v(i x- y I)p(y), (5.5) 

where the repeated index i is summed over i = 1, 2, 3. 
For the Hamiltonian to be well defined it may be neces­
sary to subtract from Eq. (5. 5) an infinite constant 
corresponding to its ground state expectation value, thus 
establishing a zero of the energy, (H - Eo}Oo = o. 

It should also be noted that we have no guarantee that 
Eq. (5. 4) defining Nj~(f, x) makes sense as it stands. 
Nevertheless, there IS reason to hope that the ensuing 
system of equations ultimately lends itself to a mean­
ingful interpretation and we shall proceed as though 
the quantities under discussion are all well defined. 

1. The first condition replacing (3.1) follows from the 
requirement that the cyclic vector be an eigenvector of 
the energy operator, 

(H - Eo)O = 0, (5.6) 

which we write in the form 

(5.7) 

To write Eq. (5. 7) as a relationship between func­
tionals, we introduce Njj(f,x}, Eq. (5.4), and note that 

! _6_ ! _6_ L(f) = (Oo,p(x}p(y)eip(f)Oo) (5.8) 
i 6f (x) i 6f(y) 

to obtain 

1 3 
- ~ f d3x Nii (f,x) 
8 i=1 62 (f) 

-~ffd3xd3yV(lx-yl) L -EoL(f}=O. 
6f(x) 6f(y) 

(5.9) 
2. A second equation follows from the requirement 
that 0 0 be invariant under time reversal, 
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(5.10) 

where T is the antiunitary time reversal operator satis­
fying (1'1', T41) = (41, \{f). To derive the desired equation 
from (5.10), consider 

(Qo,eiP(f)J(x)n o) = (Teip(f)J(x)oo,TQo)' (5.11) 

Since Tp(f) T-1 = p(f), TJ(x)T-1 = -J(x), TiT"l = -i, 
and TQ o = 00' we find 

(5.12) 

Recalling that e i p(f )J(x) e-ip(f) = J(x) - Vf(x) p(x), 
Eq. (3.7), we may write Eq. (5.12) in the form 

(Q 0' e i p (f )K(x) Q 0) 

= (Q o' e i p (f) Vp(x) ° 0) - i(Q o, eip(f) p(x)Vf(x) Qo)' 

(5.13) 
Finally, we may introduce M(f,x), Eq. (5.2), and the 

appropriate functional derivatives, to find 

M(f x) = V (.!. 6L(f») _ [Vf(x» oL(f) • 
, x i of (x) of (x) 

(5.14) 

All of the dynamical information about a system of 
interacting bosons is expressed in Eqs. (5.9) and (5.14), 
when these equations are supplemented with suitable 
boundary conditions. However, the two equations relate 
three unknown functionals. The additional relationships 
among the functions (5.1)- (5. 4) needed to complete the 
system of equations are obtained entirely from consider­
ation of the mathematical properties of the functionals. 

3. One of the remaining equations we need has been 
derived in Sec. 4. It relates the indefinite functional in­
tegral of RijY,x,y), Eq. (5.3), to the quantity Nlj(f,x), 
Eq. (4.10). we can write Nij(f, x), Eq. (5. 4), in terms of 
Rij (f, x, y) and M(f, x) as fotlows: 

Nij (f, x) ,,:: H Nij(f, x) + NJi (f, x)] 

+ i(a;!)(x)Mj(f, x) + i(ajf)(x) Mi(f, x), (5.15) 

where as in Eq. (4.18) 

Nij(f,x) = lim Jo
oo 

Rij(f + ito~,o~,o~)dt. (5.16) 
n~OO 

4. The final equation relates R;j(f,x,y) to M(f,x). 
Referring to Sec. 2C, we may write L(f), M(f, x), and 
R;/f,x,y) as 

(5.17) 

and 

M(f, x) = J$' 00(F) ei(F./) (K(x)Oo)(F) dl-' (F), 
(5.18) 

R;/f, x, y) = J$' (K i(X) 0o)(F) ei(FJ)[Kj(y)Qo] (F) dp. (F) , 
(5.19) 

where S' is the continuous dual of Schwartz's space and 
p. is a cylindrical measure on S' uniquely determined by 
L(f). 

We now define M(F, x) to be the inverse Fourier trans­
form of M(f, x); i.e., 

M(f,x) = J~, ei(F.f)M(F,x)dp.(F). (5.20) 

It is not difficult to establish the existence of M(F, x) 
using standard methods in the Gel 'fand-Vilenkin app­
roach.3 ,12 One may prove first that M(f, x) in Eq. (5. 2) 
LS the Fourier transform of a (not necessarily positive) 
measure p. 1 on S'; then that every set of measure zero 
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in p. is of measure zero in P.l; and conclude that the 
Radon:::Nikodym derivative dP.l(F)/dp.(F) exists and de­
fines M(F, x). The assumptions needed to carry through 
these arguments amount to the statement that the ground 
state vector no is in the domain of K(x). 

Similarly, define the inverse Fourier transform 
R;j(F,x,y) of Rij(f,x,y) by 

Rij(f,x,y) = J~. ei(F./)R;/F,x,Y)dP.(F). 

Then, since 0o(F) == 1 almost everywhere, 

fi ij (F,x,y) = Mi(F,x)M/F,y) 

almost everywhere, or 

R ij(f, x, y) = J$' e i (F,n M i(F, x) Mj (F, y) dp. (F). 

To summarize, we have the following system of 
coupled functional equations: 

1. "SchrBdinger equation" [(H - Eo)Oo = 0] 

1 3 
- L; J d 3x N;; (I, x) 

(5.21) 

(5.22) 

(5.23) 

8 ;=1 2 (f) 
_~ JJd3xd3y V(lx-yl) 0 L -EoL(/)=O. 

of (x) of(y) (5.9) 

2. Time-reversal invariance (roo = 00) 

M(f x) = V (! OL(f»)_ l'Vf(x)] OL(f) • 
, x i of (x) 0 f (x) 

(5.14) 

3. Indefinite functional integration relationship 

Nij (f, x) = H N Ij (f, x) + .i\j~ (f, x)] 

+ i(a;f) (x) M j (f, x) + i(ajf)(x)Mi(f,x), (5.15) 

where 

N:/f, x) = lim Jooo R;j(f + ito~, o~, o;)dt. 
,,~oo 

4. Fourier transform relationship 

R;j(f,x,y) = J$' ei(F,/)M;(F,x)M/F,y)dp.(F), (5.23) 

where L(f) = J ei(F,f)dp.(F) and M(f x) = r ei(F./) 
- ~I , ~ s' 

M(F, x)d!1(F). 

Equations (5.15) and (5.23) together express Nij(f,x) 
in terms of M(f, x) and the measure p. of which L\/) is 
the Fourier transform. Then, substituting for N;; (f, x), 
Eqs. (5.9) and (5.14) relate the two functionals L(f) and 
M(f,x). 

The above system of equations can be expected to 
determine L(f) uniquely only if it is supplemented by 
appropriate boundary conditions, just as in the case of 
Eq. (4.8) which defined the free system. The boundary 
conditions which applied to L(f) in the free case clearly 
apply in the interacting case as well. We do not know at 
this point whether these five boundary conditions suffice 
to determine a unique solution to Eqs. (5. 9), (5.14), 
(5.15), and (5.23) or whether additional boundary condi­
tions are necessary. 

In contrast to the non-interacting case discussed in 
Secs.3 and 4, we have no means of obtaining a solution 
to the above system of equations, nor do we have tech­
niques to demonstrate that a solution exists or, if it 
exists, that it is unique. 

There are other ways to supply some of the additional 
information needed to complete the system of equations 
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begun with (5.9) and (5.14). For instance one can use 
the equation of motion for J(x) in the form 

(5.24) 

and the condition that the ground state be rotationally 
invariant 

£n o = no, 

in the form 

£ = J x x J(x) d 3x , (5.25) 

(5.26) 

Thus one obtains equationsl9 which can be solved so 
as to express Nij(f,x) in termsofRij (f,x,y),M(f,x), 
and L(f); and Eqs. (5. 24) and (5.26) can replace Eq. 
(5.15). 

In whatever fashion one chooses to complete Eqs. 
(5.9) and (5.14), one can be sure that the resulting set 
of equations will not be amenable to exact solution for 
L(f) in most situations of practical interest. Therefore, 
one would like to have techniques for its approximate 
determination. The approach via functional differential 
equations is most inviting because it is suggestive of 
such techniques. An approximate functional L(f) would 
be one which was an approximate solution in some well­
defined way to a system of equations whose exact solu­
tion defined an irreducible representation of a local 
current algebra. This is one sense in which it might 
have meaning to talk about an "approximate represen­
tation" of a Lie algebra of local currents. 

Finally, we would like to mention that it is possible 
to develop systems of functional equations whose solu­
tions determine representations of the canonical com­
mutation relations, as has been done in Refs. 19 and 22. 

APPENDIX 

In this appendix we sketch a proof of Lemma 3, for 
gl>g2 E S. We believe that Lemma 3 is also valid 
for S v' but it appears the proof would be still more in­
volved. Throughout this section we let K(g) denote the 
functional K evaluated at g E S, where 

K(g) == J (eig(I) - 1) d3x. 

Lemma 3: Suppose gl,g2 E Sand K(gl) == K(g2)' 
Then for any two neighborhoods N 1 of gland N 2 of g 2 

in S, there exist functions hl E N l' h2 E N 2 and a con­
tinuous mapping t ~ f t of [0,1] into S, differentiable in 
(0,1), such that fo == hvfl == h2 and K(ft) = a constant. 

Our sketch of a proof consists of a sequence of 
lemmas stated without proof. 

LemmaAl: Suppose gl,g2 E S(R3) withK(gl) == 
K (g 2)' and N 1 and N 2 are neighborhoods of gland g 2' 
respectively, in the Schwartz space topology of S. 
Then there exist functions hl E N land h2 E N 2 such 
that K(h l ) == K(h2) and hl and h2 have compact support. 

Lemma A2: Suppose t ~ z(t) is a differentiable 
mapping of the closed interval [0,1] into the left half 
complex z plane. Suppose that z(O) == z(l) = 0 and that 
there is a Ii> 0 such that I Re{z(t)} I ~ Ii 11m {z(t)} I 
for all t E [0,1]. Then there is a continuous mapping 
t ~ k t of [0,1] into S, differentiable in (0,1), such that 
K(k t) == z(t) for all t E [0, 1], and ko == kl == O. Further­
more, the functions k t may all be chosen to have sup­
port in a single compact region of R3. 
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Lemma A3: Suppose hVh2 E S(R3) andK(h l ) == 
K(h2 ). Then there is a real-valued differentiable func­
tion s(t) for t E [0, 1] with s(O) == s(l) == 1 and s(t) > 0 
for all f E [0,1], such that if g t (x) == (1 - t) hI (s(f)x) + 
th2(s(t)x) then z(t) == K(h l ) - K(g t) satisfies the hypo­
theses of Lemma A2. 

Proof of Lemma 3: Suppose gl,g2 E Sand 
K(gl) == K(g2)' Let N land N 2 be neighborhoods of 
gl and g2' respectively. By Lemma AI, we can choose 
hl E Nl and h2 E N2 with K(h l ) ==K(h2) and with hI 
and h2 of compact support. By Lemma A3 there exists 
a differentiable function s(t) on the interval [0,1], allow­
ing us to construct 

gt(x) = (1- t)hl(s(f)x) + th2(s(t)x), 

with z(t) ==K(h1) -K(g t) 

satisfying the hypotheses of Lemma A2. Since hl and h2 
have compact support, the g t all have support in some 
compact region S. By Lemma A2, there is a continuous 
mapping t ~ k t of [0, 1] into S(R 3), differentiable in the 
open interval (0,1), such that K(k t ) == z(t) = K(hl)-K(gt). 

By translating the functions k t we can ensure that 
the functions k t and g t have disjoint supports, without 
changing the values of K(k t). Then let f t == g t + k t ; 
we have K(ft) == K(gt + k t) == K(g t) + K(k t ) == K(h l ). 
Since fo == hl and fl == h2' the lemma is proved. 
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The problem of a scalar wave scattering from a random interface between two isotropic 
homogeneous media is solved in terms of a diagrammatic series expansion. It is assumed that the 
interface is single valued and that it has multivariate Gaussian statistics. Partial summation of the 
series in terms of linear integral equations is briefly discussed. 

I. INTRODUCTION 

The problem of waves scattering from a random 
rough surface is one of considerable practical interest. 
For example, the ensemble statistics for scattering 
from a stationary random rough surface should well 
approximate time-averaged scattering from a time­
varying surface such as the sea surface or the time­
averaged scattering from a stationary random rough 
surface which is being scanned. In treating this prob­
lem it is important to have a systematic procedure for 
evaluating the statistics of the scattered fields. Such 
a procedure has been developed for scalar waves 
scattering from a surface with Neumann boundary con­
ditions.! The result is a diagrammatic expansion for 
the correlation functions of the scattered field analogous 
to those for propagation through a random medium2 and 
quantum field theory.3 

While this problem is physically realizable and of in­
trinsic interest, it is somewhat contrived since most 
surfaces occurring in nature are not impenetrable and 
thus represent a more complicated boundary problem. 
In the present paper a set of diagrammatic rules are 
developed for the scattering of scalar waves from a 
random rough interface between two media which, ex­
cept for the presence of the interface, are homogeneous 
and isotropiC. The media are assumed to have differing 
impedances and velocities of propagation. The rules 
which have been developed are not unique, but have been 
chosen to be the simplest commensurate with the follow­
ing desirable properties: 

(i) The lowest-order Milgram, Le., the Born approxima­
tion, is exact when the surface roughness vanishes. 

(ii) The lowest-order diagram is exact for any degree 
of roughness when the properties of the two media are 
identical, that is, the interface vanishes. 

(iii) When the velocity of propagation is zero or the 
impedance is infinite in the medium not containing the 
source, the diagrammatic expansion is well-defined and 
depends only on the properties of the medium containing 
the source. In these limits the boundary condition be­
comes the Dirichlet condition and the surface is 
impenetrable. 

(iv) When the impedance of the medium not containing 
the source is allowed to become zero, the diagram­
matic expansion is well-defined and depends only on 
the properties of the medium containing the source. In 
this limit the boundary condition becomes the Neumann 
condition and the surface is impenetrable. 

It should be pointed out that finding one diagrammatic 
expansion which has all these properties is not trivial. 
Many alternate expansions can be found for which par­
tial summation of the expansions must be performed in 
order to examine the limiting cases (ii), (iii), and (iv). 
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Properties (i) and (11) are desirable because they 
constitute the limit of two cases where a truncated per­
turbation series is a useful apprOximation. Clearly, the 
diagrammatic expansion corresponds to a perturbation 
series in these cases only if properties (i) and (ii) are 
true. Propertie's (iii) and (iv) are desirable since 
scattering from an impenetrable Dirichlet or Neumann 
surface is considerably simpler than scattering from 
an interface, and this simplicity should not be hidden in 
an infinite series if the treatment of cases which are 
almost impenetrable is to be facilitated. 

One interesting result that comes out of the diagram­
matic expansion developed in the next section is that 
the lowest-order (Born) term does not correspond to 
the Kirchhoff4 •5 approximation except for the limits 
of a Dirichlet or Neumann surface, but is a simpler 
approximation. 

In Sec. II the integral equations for scattering from 
a single-valued deterministic interface are developed 
in a form which satisfies properties (i)-(iv) and where 
the surface height enters only through the function 
exp{ ik ",h(xJ.)}' This form is very desirable since sub­
sequent statistical averages can be expressed in terms 
of the characteristic functions associated with the sur­
face height probability distributions and these charac­
teristic functions are well-known if the surface statis­
tics are multivariate Gaussian. 

In Sec. III the diagrammatic rules for scattering from 
a deterministic surface are determined from the integ­
ral equations constructed in Sec. II. The diagrammatic 
rules for the moments of the field scattered from a 
random rough surface are then derived from these 
rules and the statistical properties of the surface. It 
is assumed that the surface has multivariate Gaussian 
statistics. Partial summation of the series for the 
averaged field and bilinear moment of the field is dis­
cussed in terms of linear integral equations. 

Section IV contains some concluding remarks. 

II, SURFACE INTEGRAL EQUATION 

Figure 1 shows a schematic representation of the 
situation under consideration. The upper region (I) is 
filled with an isotropic homogeneous medium which 
supports scalar waves with a phase velocity of v+ and 
whose impedance isZ+. Similarly, the lower region (II) 
is filled with an isotropic homogeneous medium which 
supports scalar waves with a phase velocity of v_ and 
whose impedance isZ_. These two media are joined 
by an irregular interface specified by 

where xJ. is a two-dimensional vector in the plane per­
pendicular to the z axis, and h(xJ.) is assumed to be a 
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single-valued function with zero mean value and multi­
variate Gaussian statistics. 

The Green's function for a harmonic source located 
at x' satiSfies the partial differential equations 

(\12 - v:2~) G(xl x';t) = 63(x- x')e- iwt , z >h(x.L), 
\ iJt2 

(\1 2 - v:2 ~) G(x I x';t) = 63(x- x')e- iwt, z < h(x.L), 
iJt2 

plus boundary conditions at the interface and at infinity. 
Since the interface is assumed to be stationary, the time 
variation is easily separated by letting 

G(x I x; t) = G(x I x') e-iwt • 

The partial differential equations that G(x I x') satis­
fies are 

(\12 + k~) G(x I x') = 63 (x - x'), z > h(x1.), (la) 

(\1 2 + k~) G(x I x') = 63 (x - x'), z < h(xJ, (lb) 

where 

k+ = w/vH k_ = w/v_. 

The boundary conditions on G(x I x') at the interface, 
corresponding to the continuity of pressure and normal 
velocity for an acoustic field, are 

2':;:1/2 lim G(x I x') = Z:1/2 lim G(x Ix), 
x->xs(x}+ x->xs(x}_ 

Z+ 1/2 lim 
x -> x S(X l.)+ 

n(x1.) . \1G(x I x') 

= ZY2 lim n(xl.)· \1G(x I x'). 
x->xs(x}-

The + or - above indicates whether the limit is from 
above or below the interface, respectively. The vector 

xs(Xl.) = h(xl.)iz + xl. 

is the position vector for the pOint on the surface whose 
x,y coordinates are given by x 1.' The vector n(x l.) is 
normal to the surface at this point. At infinity the radia­
tion boundary condition corresponding to outgoing 
scattered waves is assumed. The interface boundary 
conditions have been chosen so as to guarantee that the 
interface is free of sources or sinks. This was accom­
plished by requiring that the normal component of the 
conserved current associated with (1) be continuous 
across the interface, that is 

z 
I 

II 

FIG.1. A cross section through a representative interface. 
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lim n(x 1.) • j(x) = 
x->xs(x1.)+ 

where 

j(x) = ImG*(x I x')\1G(x I x'), V· j(x) = 0, 

j(x) is proportional to the energy flux. 

The problem of finding G(x I x') can be reformulated 
in terms of an integral equation which, after some mani­
pulation, can be written in a form that is suitable for 
statistical averaging. 

The point of departure is to derive two integral rela­
tions for G(x I x'); one following from the application of 
Green's theorem to the upper region and the other from 
the application of Green's theorem to the lower region. 
For the upper region the integral relationl , 6. 7 is 

G+(x'i x") e(z' - h(x~» = Go+(x' - x") e(z" - h(x1}) 

+ J d2X1. n a (XJ [GO+(x' - Xs(X.L» G+. a (Xs(X1.) I x") 

+ ~ GO+(x' - xs(Xl.»G+(xs(x1.)I x")], (2a) 
aX~ 

where 

G+ a (x' I x") = _a_ G+(x'i x"). 
, ax~ 

Equation (2a) follows directly from (la). The Green's 
function Go+(x) is a solution of 

for all x, and it satisfies the radiation boundary condi­
tion as I x I ~ co. Summation over repeated Greek in­
dices is assumed, and na (x1.)' a == 1,2,3, are the com­
ponents of the vector 

n(x1.) = iz - \11.h(x1.)' 

which is normal to the surface, but not of unit length. 
The function e(x) is the unit step function 

e(X) ={ 1, 
0, 

x >0 
x< 0 

The Green's function G+(x'i x") is equal to G(x' I x') in 
region I, but it continues smoothly across the interface 
into region n, where it does not equal G(x' I x"). This is 
the reason for introducing the distinguishing notation 
subscript +. Thus G+, a(Xs (x1.) I x") and G+(xs(x1.) I x") 
are the upper boundary values of gradG and G, respec­
tively. 

Similarly, for region n the integral relation is 

G_(x' I x") e(- z' + h(x'1.» = Go- (x'- x") e(- Zll + h(x1» 

- J d2x1.na(x1.) [Go_(x' - xs(x1.»G-.a(xs(xl.)1 x') 

+ _iJ_ Go_(X'-xs(X1.»G_(Xs(x1.) I XI). (2b) 
iJx~ J 

The Green's function Go- (x) is a solution of 

(\1 2 + k.?)Gojx) = 63 (x) 

for all x, and it satisfies the radiation boundary condition 
as I x I -> co. The Green's function is equal to G_(x'i x") 
in region II but not in region I and G_. a (xs(x1.) I x") and 
G_(xs(X.l.) I x") are the lower boundary values of gradG 
and G, respectively. 
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Integral equations for G±(xs(x.J I x") and ncx(xJ.)G±, a 
(xs(xJ.) I x") can be derived from (2a) and (2b) by taking 
the surface limit of (2a) and (2b) and the gradient of 
(2a) and (2b). These limits must be performed care­
fully since both sides of Eqs. (2a) and (2b) possess sin­
gularities in x as x approaches xs(x~). The discontin­
uities are particularly bad in the gradients of (2a) and 
(2b). One way of dealing with this is to rewrite (2a) and 
(2b) and the normal derivatives of (2a) and (2b) in such 
a way that the singularities present manifestly cancel 
to such an extent that the surface limit can be properly 
taken. First (2a) and (2b) will be considered. Let 

e(Z) = t + E(Z) 

where 

{
+ to 

E(z) = 1 
- 2, 

Z> 0, 

z<O 

With no loss of generality it can be assumed that the 
source is in region I. Equations (2a) and (2b) can then 
be rewritten as 

G+(x'i x") = 2 Go.(x' - x") - 2G+(x' I x'~E(z' - h(x~» 

+ 2 J d2XJ. na (xJ.) [Go+(X' - xs(xJ.»G.,a (xs(xJ.)I x") 

+ _a_ Go+(x' - xs(xJ.»G+(XS(xL ) I xlI)l, (3a) 
ax: J 

G-<x'i x") = 2G_(x' I x")E(z' -h(x'J.» 

- 2 J d 2x J.n a (xJ.) [Go-<x' - XS(xL » G_, a (xs(xJ.) I x") 

+ _a_ Go+(x - xs(xJ.»G_(xs(xJ.) I XII~. (3b) 
ax~ J 

As already mentioned G+(x' I x") = G(x' I x") in region I 
and G_ (x' I x") = G(x' I x") in region II. If the interface 
is suffiCiently smooth, then a continuation of G+(x' I x") 
through the interface into region II will not be Singular 
until x is a finite distance below the interface, since 
any Singularities encountered correspond to images of 
the source below the interface. Similarly, if G_(x' I x") 
is continued upward through the interface, then no sin­
gularities will be encountered until x is a finite dis­
tance above the interface. For this reason the surface 
Singularities due to the G ± (x' I x") E(z' - h(xr» term on 
the right-hand sides of (3a) and (3b) must be canceled 
by similar Singularities in the integral term, leaving a 
function that can be continued through the interface. 
In particular this cancelation will be done in such a 
way that the terms on the right-hand sides of (3a) and 
(3b) are replaced by terms that are individually con­
tinuous, so that the surface limit can then be taken on 
each term separately. The normal derivative of (3a) 
and (3b), that is n(xJ.) dotted into the gradients of (3a) 
and (3b), will be treated in a similar manner. This 
partial removal of the singularities and performance 
of the surface limit yields four coupled surface integral 
equations which, when combined with the boundary con­
ditions at the interface, will be the basis for subsequent 
developments. 

The first step in the partial cancelation of the singu­
larities in (3a) and (3b) is to rewrite the free Green's 
function. This Green's function Go±(x) is given by 

eik±lxl 
Go±(x) = (21T)-3 J d3k eik'x(k~ - k2 + iE)-l == - 41T I x I 

Integrating over k z only gives 
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(4) 

Taking the z derivative of Go±(x) gives 

:z Go±(x) = (21Tr2 J d2k J. eikJ.'XL edk~ -kII zl E(z), 

which in the neighborhood of z = 0 becomes 

~ Go±(x) ~ 02(xJ.) E(z). az 
Because of this behavior, the most important singularity 
in the integral term in (3a) and (3b) must be contained 
in the n a (a / ax ~)G 0 ± part of the integrand. This singu-
1arity can be removed by letting 

a! a Go± (x) ~ GO±a (x) + 0 z (xJ.) cos(k± z) E(z) 0 a3' (5) 

This choice is not unique, but has been chosen to be 
simple and to improve the behavior of the k ± ---7 00 limit. 
Thus, 

G (x) = (21T)-3 J d3k eik·x ( ka _ p k z 6 (3 ), 
O±a k2 _ k2 + iE k 2 _ k2 

± ± z 
(6) 

where P indicates the Cauchy principal value distribu­
tion. Substitution of (5) into (3a) and (3b) gives the in­
tegral relations 

G+(x I x") = 2Go+(x - x') - 2{G+(x I x') 

- G+(x s (xr) I x') cos [k+ (z' - h(xL»]} E(z' - h(xL» 

+ 2 J d2xJ.na(xJ.)[GO+(x - xs(xJ.»G+,a(xs(xJ.) I x") 

+ GO+a(x'- xs(xJ.»G+(xs(xJ.) I x')] (7a) 

and Similarly 

G_(x I x") = 2{G_(x' I x") 

- G_ (xs(xJ.) I x") cos [k_(z' - h(xJ.»]} E(z' - h(~» 

- 2 J d2xJ. na(xJ.) [Go-(x - xs(xJ.»G_.a(xs(xJ.) I x") 

(7b) 

In (7a) and (7b) the coefficient of E(z' - h(x;» vanishes 
linearly as x ~ Xs (x'J.) and thus this term is continuous 
(but not differentiable) there. The surface limits of (7a) 
and (7b) can now be legitimately taken on a term by 
term basis, giving the integral equations 

G+(xs(xJ.) I x') = 2Go+(xs(x~) - x") 

+ 2 J d2xJ.[GO+(xs (xJ.)- xs(xJ.»G+n(xs(xJ.)I x") 

+ n a (xJ.) Go+ a (xs (x~) - Xs (xJ.» G+(xs (xJ.) I x")], (8a) 

G_(xs(x~) I x') 

= - 2 J d2xJ. [Go-(xs(x~) - xs(xJ.» G-n(Xs (XL) I x") 

+ na(X.l.)GO-a(Xs(x~) - Xs(XJ.»G_(Xs(XJ.) I x")], 
(8b) 

where 

In a similar way, integral relations for G±n can be 
found. Taking the gradient of (3a) gives 
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a 
G+(x I x") = 2 _a_ Go+(x' - x") - 2(~ G+ (x'lx"~E(Z' - h(x:» - 2G+(x' I x")na(x~)li(z' - h(x:» 

ax~ ax~ J 

+ 2 J d2xl. [~ Go+(x' - xs(Xl.» G+n (xs (Xl.) I x") + n/l(xl.) ( a2 
Go+(x' - Xs (Xl.)~ G+(xs (Xl.) I x,,~ 

a~ k'k~ 'l ~ 
(9a) 

and similarly the gradient of (3b) gives 

- 2 J d 2xl. [_a_ Go-(x' - xs(xl.»G-n(xs (Xl.) I x") + n8(xl.) (_a_2 
- Go_(x' - xs(Xl.)~r::' _ (xs(Xl.) I x,,)l. 

ax' ox' ax' r J 
a 8 a (9b) 

As before, the singularities must be partially canceled 
before the surface limit can be legitimately performed. 
This cancelation can be accomplished by letting 

a ~ 
-0 - Go± (x) = GO±a (x) + 02(Xl.) cos(k± z) E(z)oa3' 

Xa 
(10) 

~ Go±(x) ~ GO±8,,(x) + 02(xj[0(z) - k± sin(k±z) E(z)] 0Ba' 
aXSoxa (11) 

Equation (6) gives an explicit expression for GO±a (x). 
The corresponding expression for Go± aa(x) is 

Letting 

G,n(x' I x") = na (x:) _0_ G±(x' I x"). 
ax'a 

and combining (10) and (11) with (9a) gives 

G+n(x I x") = 2n a (xD _0_ Go+(x' - x") 
ax~ 

k~oSa ) -p . 
k~ - k~ 

(12) 

- 2{G+n(x' I x") - G+n(xs(x~) I x") cos [k+(z'- h(x~))] 

+ k+G+(xs(X.L) Ix")n2(x~) sin[k+(z' - h(x:»]} E(z' - h(xD) 

- 2 [G+(x I x") - G+ (xs(x~) I x")]n2(x~) o(z' - h(xl.» 

+ 2 J d2xl.[na(xJGO+a(x' - xs(Xl.»G+,,(xs(X.L)I x") 

+ n a (xDn 8(x.L) GO+a8 (x - xs(Xl.»G+(xs(Xl.) I x")]. 

(13a) 
Similarly, combining (10) and (11) with (9b) gives 

G_n(x'i x") 

= 2{G_n(x I x") - G-n(xs(x~) I x") cos [k_(z' - h(x~»] 

+ k_G_(xs(X:) I x") n2(x~) 

x sin[ k_ (z' - h(x.L»]} E(Z' - h(x~» 

+ 2{G_(x' I x,,) - G_(xs(x') I x")} n2(x:) o(z' - h(x:» 

- 2 J d2x.L [na(x:)GO-a(x - xs(Xl.»G-n(xs(Xl.) I x") 

+ na(X~)nB(xl.)GO-a8(x' - xs(Xl.»G_(xs(Xl.) I x")]. 
(13b) 

The coefficients of o(z' - h(:l(» and E(Z' - h(x:» in 
(13a) and (13b) vanish linearly as z' -7 h(x:), thus the 
o(z' - h(:l(» can be dropped and the E(z' - h(x~» term 
is continuous at the interface. Taking the surface limits 
of (13a) and (13b) gives 
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G+n(xs(x:) I x") = 2G O+n(xs(x:) I x") 

+ 2 J d2xl.[na(Xl.)GO+a(xs(x~) - xs(x~» G+n(xs(Xl.) I x") 

+ na(x~)tt8(x,,)GO+a8(xs(x~) - xs(Xl.» G+ (xs(Xl.) I x")], 
(14a) 

G-n(xs(x~) I x") 

= - 2 J d2xl.[na(xnGO-a(xs(x~) - xs(xJG-n(xs(Xl.) I x") 

+ na(x~)nB(xl.)GO-a/l(xs(x:) - xs(xj)G_(xs(Xl.) I x")]. 
(14b) 

The boundary conditions can be used to relate G_ and 
G-n to G+ and G+n evaluated on the interface, and thus 
(8b) and (14b) can be written in terms of G+ and G+n • 

Carrying this out and introducing the compact notation 

and letting 

gives 

G+(x~ I x") = - 2 J d2Xl.[RGo-<x~ - xs)G+n(xsl x") 

+ na(x.L) GO-a(xs - xs)G+(xsl x")] (15a) 

G+n(xs I x") =- 2 J d2xl.[na(:l() GO- a (xs - xs)G+n(xslx") 

+R-lna(x~)n/l(x.L)GO-a8(xs - xs)G+(xsl x"). (15b) 

Rewriting (8a) and (14a) gives 

G+(xs I x") 

= 2 Go+(x's - x") + 2 J d 2xl. [Go+(x~ - xs)G+n(x.lx") 

+ n ex (Xl.) GO+ a (x~ - xs)G+(xs~")] (16a) 

G+n(xs I x") = 2GO+n(xs I x") 

+ 2 J d2x l. [na (x:) GO+a (xs - xs) G+n (xs I x") 

+ na (X:)n8(xl.)GO+aS(xs - xs)G+(xs I x')]. (16b) 

Equations (15a), (15b), (16a), and (16b) are the basis for 
the next developments. 

In order to be able to solve for G+(xs I x") and 
G+n(xs I x") two coupled integral equations are needed, 
one expreSSing G+(xs I x') in terms of G+(xs I x") and 
G+,.(xs I x") and another expressing G+n(xs I x") in 
terms of G+(xs I x") and G+n(xs I x"). At first sight it 
might appear that either (15a) and (15b) or (16a) and 
(16b) could be used, but this would be incorrect. The 
solutions of (16a) and (16b) can not be unique since 
they were derived from the Green's integral relation 
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for the upper region,z> h(xl.), only. In other words, 
(16a) and (16b) are equivalent to saying that there is 
a point source of x" and the scattered wave for Z > h(xl.) 
is outgoing. There are many field configurations that 
satisfy this condition. This nonuniqueness means that 
the resolvent of (16a) and (16b) is singular, and (16a) 
and (16b) are redundant. A similar argument applies 
to (15a) and (15b) since they were derived from Green's 
integral relation for the lower region only. Thus the 
resolvent of (15a) and (15b) is also singular. However, 
a linear combination of (15a) and (16a) together with a 
linear combination of (15b) and (16b) constitutes a pair 
of coupled integral equations which will, in general, 
have a well-defined resolvent and thus a unique solution. 
This procedure can be heuristically justified by a mat­
rix analogy that embodies the essential features of the 
problem. 

Assume that there are two matrices, each of which 
maps the same vector space A onto different subspaces 
B and C. Because the mapping is not one to one, the 
matrices are not invertable. Also assume that the sub­
spaces span the original vector space, i.e., that A = B EB 
C. Thus the mapping generated by a matrix which is a 
linear combination of the matrices or a linear combina­
tion of the matrices multiplied by nonsingular matrices 
will in general be one to one, and the matrix will be in­
vertable. The lack of uniqueness is very analogous to 
the gauge arbitrariness of electrodynamics. 

Equations (15a) and (16a) will be combined as follows; 
multiply (16a) by f+~u(x, x~)n,,(x~), (15a) by f-Ilu (x, x~) x 
n U (x~), add the reSUlts and integrate over x~. This 
gives 

J d2x~[J+/-l"(x, x's) + f-/-lu(x, x~)]nu(x~) G+(X~IX") 
= 2 J d2x~f+l'u(x,x~)nu(~)Go+(x~ - x") 

+ 2 J d 2x{ d2xll. ([f+/-lv(x, x~)n" (x~) Go+(x's - xIs) 

- Rf-/-l"(x, x~)nu(x~) Go-(x~ - xIs)]G+n(xls I x") 

+ [J+/-lu(x,x~)n,,(x~)GO+a(x~ - xIs) 

- f-l'u(x,x's)nu(~)GO-a(x~ - xIs)]na(xIJG+(xIslx")}. 
(17a) 

Similarly combining (15b) and (16b) by multiplying 
(16b) by g.(x, x~), (15b) by g_(x, x~), adding the results, 
and integrating over x~ gives 

J d2X;[g+(x,x~) + g-<x,x's)]G+n(x'sl x") 

= 2 J d2x~ g+ (x, x;)na (x~) GO+a (x: - x") 

+ 2. J d 2x{ d 2x 11. {na (x~) [g +(x, x's) GO+a (x's - xl s) 

- g-(x,x's)GO-a(X~ - xIJ]G+n(xls I x") 

+ na(X~) [g+(x, x's)GO+aB(x~ - xIs) 

- R-1g-<x,x's)GO_aB (x's - xIs)]nB(xl-L)G+(Xls I XII)}. 
(17b) 

At the present juncture the functions f± a 8 (X, xs) and 
g±(x,xs) are rather arbitrary. Equations (17a) and (17b) 
as they presently stand are not suitable for iteration. 
One condition that will be imposed on the chOice of 
f±aB(x,xs) and g±(x,xs) is that (17a) and (17b),when 
transformed to k space, have a form that is suitable 
for iteration. Also, it is desirable that the full Green's 
function be easily constructed. It should be noted that 
(17a) and (17b) are three dimensional while (15a), (15b), 
(16a), and (16b) are two dimensional. The reason for 
expressing everything in terms of three-space rather 
than two-space is that the Fourier transforms of the 
kernels are simpler and later statistical averaging is 
made much easier. The passage from the two-dimen-

J. Math. Phys., Vol. 15, No.1, January 1974 

105 

sional surface integral equation to a three-dimensional 
one implies nonuniqueness in addition to the nonunique­
ness due to gOing from four doubly redundant integral 
equations to two non redundant ones. This arbitrariness 
is similar to the gauge arbitrariness of electrodynamics, 
which is also the result of expanding the number of 
degrees of freedom of the system in order to obtain a 
simpler set of equations. The choice of particular 
forms for f± aB(x, xs) and g±(x, xs) corresponds to the 
various choices of gauges in electrodynamics, and the 
choice which ultimately is made is dictated by the prob­
lem under consideration. For the present problem it 
is felt that the particular choice, which will shortly be 
discussed, is the simplest commensurate with the de­
sired properties outlined in the introduction. 

It is convenient to transform (17a) and (17b) to k 
space. The transformation of the Green's function to 
k space is defined by 

Z(x' I x") = (21Tt 6 J d3k' d 3k" ei(k"X'-k"'x")Z(k' I k"), 

where (18) 

Z(x' I x") = G+(x' I x") or G+n(x' I x"). 

Integrals of the form 

:) = J d2x 1. F(x s ) n(xl.) . V(x.) 

occur frequently in (17a) and (17b), so rewriting:) in 
terms of k space will make the transformation of (17a) 
and (17b) easier. The transformation of F and V to k 
space is defined by 

F(xs) = (21T)-3 J d3k F(k) e-ik .xs , 

V(xs ) = (21Tf3 J d 3k V(k)e- ik ' Xs • 

Using (19) and (20) together with 

n(xl.) = iz - V'l.h(xl.), 

Xs (Xl.) = xl. + t.h(x 1.) 

gives 

(19) 

(20) 

F(x.)n(xl.) .V(xs) = (21Tt 6 J d3k1d3k2F(kl)e-Hkll.-k21.)'Xl. 

X(iz-i \11. ).V(k2)e-i(klZ-k2Z)k<X1.). 
klz - k 2z 

Integrating over xl., interchanging the order of the in­
tegrations, and integrating by parts in xl. gives 

:) = (21Tt 6 J d3k1d3k2 F(k1) ~ A(k
l 

- k2) kl - k2 . V(k2) 
. I k lz -k2z 

l ~ dsl. • V(kz) 
k 1z -k

2z 
c 

x exp[i(k11. - k21.)· xl. + i(k1z - k2Z)h(Xl.)]~' 
where 

A(k) = J d2xl. e-k·xs<Xl.). (21) 

The last term in this expression for :) is a line inte­
gral in the plane over the contour C which is to be re­
moved to infinity. The contour integral, as a function of 
kll. - k 21.' oscillates at an increaSing rate as C goes to 
infinity. It will be assumed that F(kl ) or V(k2) is suffi­
ciently well-behaved that the integral over kl and k2 of 
these rapid oscillations vanishes, that is, the surface 
term can be dropped. Thus 
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3 = (21T)-6 J d3kld3k2F(kl)A(kl - k2)[(k1 - k 2)'V(k2)/ 

(klz - k2z »). (22) 

Combining (17a) with (18) and (22) gives 

J d3k1d3k2[f+~v(kl>k2) + f_~v(k1,k2)] k 1v - k 2v 

k 1z - k 2z 
A(k1 - k2) G+(k21 k") 

k k" 
- 2(21T)3 J d 3k f (k k) 1v - v A(k -k")G (k") 1 +~v , 1 k _ k" 1 0+ 

1z 2 

- 2(21Tt3 J d 3k 1 d
3k 2d 3k 3 ([f+~u (k, k1) GO+(k2) 

- Rf_ ~v(k, k1) Go- (k2)] 

k1 - k 
x v 2v A(k - k )A(k - k )G+ (k I k") 

k -k 1 2 2 3 n 3 
1z 22 

where 

GO±(k) = (k~ - k 2 + iE)-l, (24) 

GO±a(k) = kaGO±(k) -P[kz/(k~ - k~)]Oa3' (25) 

GO±as(k) = -kaksGO.(k) + P[k~/(k~ - k~»)Oa8' (26) 

Similarly, combining (17b) with (18) and (22) gives 

J d3k 1d 3k 2[g+(k, k1) + g_(k, k1)]A(k1 - k2) G+n (k2 ik") 

- 2i(21T)3 J d 3k 1g+(k,k1 )A(k1 - k")Go+(k") 

- 2(21Tt3 J d3k1d3k2d3k3 

x([g+ (k, k1) GO+a (k2) - g _ (k, k1) GO-a (k2)] 

k1 - k 
x a 2 a A(k _ k )A (k - k ) G + (k I k") 

k -k 1 2 2 3 n 3 
12 2z 

+ [g +(k, k1) G 0+a8 (k2) - W1 g - (k, k1) G 0-a8 (k2») 

k1 - k k - k 
x a 2a 28 38 A (k k)A(k k) 

k k k k 1- 2 2- 3 
1z - 2z 2z - 3z 

X G + (k3 1 k"~= O. (27) 

As mentioned before, it is desirable to choose g± and 
f± as is such a way that the integral equations are suitable 
for iteration. Thus, choose 

(28) 

Also, it is desirable for the series generated by the 
iteration of (23) and (27) to be simple for the statistical 
averaging which must be performed later. In particular, 
it is desirable to choose g± and f ,aS so that they are 
functionally independent of A(k). If this is true then the 
nth term in the series contains a product of the form 

n 

/!1 A(k j ), 

and this is the only way the surface height h(x.J enters. 
This product, since it is easy to average in terms of a 
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cluster expansion, means that the whole series of pro­
ducts of series will be amenable to statistical averaging. 
It is worth noting here that if it is required that the 
lowest order diagrams, i.e., the Born apprOximation, 
corresponds to the Kirchhoff apprOximation, then g. 
and f'aS cannot be chosen to be independent of A(k), 
and therefore the lowest-order approximation will not 
be the Kirchhoff approximation. The reason why expan­
sion around the Kirchhoff approximation is undesirable 
can be understood by recalling that the Kirchhoff app­
roximation involves replacing the field and its normal 
derivative on the interface by their values assuming 
the surface is an infinite plane which is locally tangent. 
For an impenetrable surface these are proportional to 
those of the incident field, but for an interface complica­
tions arise because the reflection coefficient is a func­
tion of the slope of the surface resulting in terms that 
are difficult to handle statistically. It is also convenient 
to choose g+ and f+as to be of the form 

g+(k,k') =g(k)03(k- k'), 

f+as(k,k') = f(k)oa803(k- k'). 

Introducing the new quantities 

(30) 

(31) 

T a(k I k")Go+(k") = (21Tt 6 J d 3k 2[(k a - k 2a )/(k 2 - k 2z ») 

x A(k- k2)G+(k2 I k"»), (32) 

Tn(k I k")Go+(k") = (21Tt6 J d 3kzA(k - k2)G+n(k2Ik"), 
(33) 

and combining (28)- (33) with (23) and (27) gives the 
coupled integral equations 

k -·k" 
T (k I k") = 2(21Tt3 f(k) a a A(k - k") 

a k _ k" 
z z 

+ 2(21Tt3 J d 3k
1 

ka - k 1a A(k- k1 ) 

k z - kl;< 

x Hf(k)[Go+(k1 ) +RGoJk1»)-RGo-(k1)}Tn(kll k") 

+ {f(k)[G o+s(k1) + Go- s (k1 )] - Go_s(kJ.)}TB(k1 ik")}. 
(34) 

(k - k") k" 
T (k I k") = 2i(21T)-3 g(k) a a a A(k - k") 

n k
z 

_ k~ 

J 
k - k 

+2(211)-3 d3k1 a laA(k-k1 ) 
k2 - k1z 

X Hg(k) [G O+a (k1) - GO- a (k1)] 

- GO-a(k1 )} Tn(k1 1 k") 

+ {g(k) [GO+aS (k1) + W1 GO-aS (k1)] 

- R-1 GO-aS (k1)}T8 (k1 ik")}. (35) 

It is still necessary to choose a form for g(k) and 
f(k). This will be done by requiring that the lowest­
order term in an iterative solution of (34) and (35) be 
exact when h(xJ.) = O. The first step in this direction 
is to write the full Green's function in terms of T" and 
T a' Equation (2a) gives for region I, Le., for z' > h(x~) 

G(x' I x") 

= GO. (x' - x") + J d2xJ. (Go+(X' - xs)G+,.(xsl x") 

+ n (xJ.) _d_ Go+(x' - xs)G+(xsix")\. (36) 
a dX~ 'J 



                                                                                                                                    

107 G. G. Zipfel, Jr.: Scattering of scalar waves 

Introducing the Fourier transforms for the factors in 
the integrand and using (22) gives 

G(x' I x") = Go.(x' - x") 

+ (271)-9 J d 3k'd3 kd 3k"ei(k'.x'-k"'x") 

x Go.(k')A(k' - k){G.n(k Ik") 

+ ik~[(k~ - ka)/(k; - k.)]G.(k I k")}. 

Thus for 

z' > h(x~), z" > h(x~), 

G(x' I x") = Go.(x' - x") + (271)-3 J d 3k'd3k"e i (k'·x'-k".x"j 

x Go.(k') [T ,,(k' I kIf) + ik~ T a (k' I k")]Go.(k"). (37) 

Similarly from (2b) one gets for region II 

G(x' I x") = _R-l/2 J d 2Xl (RG o_(X' - xs)G.n(x s I x") 

+ n (Xl) _0_ Go_(x' - xs)G.(xsl x")\ (38) 
a ox~ 'J 

or in k space 

G(x' I x") = - R-l/2(271)-3 J d 3 k'd3 k" ei(k"X'-k"'X")Go_(k') 

x [RTn(k' I kIf) + ik'aTa(k' I k")]Go.(k"), (39) 

It is interesting to note that (36) and (38) guarantee 
that G(x' I x") satisfies the partial differential Eqs. (la) 
and (lb), and the radiation condition. If the upper and 
lower surface limits are taken, then (34) and (35) are 
just another way of writing the boundary condition at 
the surface, one much more useful for present purposes. 

In order to determine g(k) and f(k) , the Green's func­
tion for a flat interface is needed. The Green's function 
can be written in the form 

G(x'/x") = (271r2 J d2Rleikl'(x'l-x'j)g(z'/ z"), 

where g(z' / z") satisfies 

(~ + K~\ g(z' / z") = 6(z' - z"), z' > 0, 
dz'2 ) 

( d2 + K~) g(z' / z,,) = 0, z' < 0, 
dz'2 

where 

K± = .Jk'f - k~ + iE 

(40) 

(41) 

(42) 

and where z" is assumed to be greater than zero. Also 
g(z' / z") satisfies the boundary conditions 

lim 9 (z' I z,,) = R-l/2 lim 9 (z' / z"), 
Z'- 0+ 2'-0-

lim ~ g(z'/z")=Rl/2 lim ~ S(z'/z"), 
.'~ o. dz' .'- 0- dz' 

It is easy to verify that (40) satisfies (la) and (lb) for 
a flat surface. The solution to (40) and (41) that satisfies 
the boundary conditions is, for z" > z' > 0 

iK (."-.i') 
e • RK.-K_ 

g(z' / z,,) = --- + ---
2iK. RK. + K_ 

e i.K.+ (Z'+Z") 

2iK. 
(43) 

and for z"> 0 > z' 

(44) 
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The procedure to be followed is to compare (40), with 
g(z' / z") as given by (43) and (44), with G(x' / x") as cal­
culated from (37) and (39) using the lowest-order or 
Born term for Tn (k' / k") and T a (k' / k"). The Born 
term is the first term on the right side of (34) and (35). 
Substitution of this term into (37) and using the fact that 

A(k) = (271)26 2(kJ.), 

when 

h(xl ) = 0 

gives for z" > z' > 0, 

G(x' / x") = Go+(x' - x") + 2i(21Tr4 J d2k~eik'l'(x'l-xl) 
x J dk~dk~ e-H k2 .. '-k~A") Go. (k')[g(k') k~ + f(k') kn 

x Go. (k~, kn (45) 

and for z" > 0 > z', 

G(x' / x") =_R-1/2 2i(21Tr4 J d2k:eil<'.c·(X~-X.l) 
x J dk~dk~ e i ( k~A'-k'ZA") Go- (k') [Rg(k')k; 

+ f(k')k~]Go.(k~,k;). (46) 

It will now be assumed that f(k) and g(k) are indepen­
dent of k A' This means that the k; and k~' integrations 
in (45) and (46) can be performed. USing (4) and inte­
grating the remaining terms over k z and k~ gives for 
z" > z' > 0, 

G(x' / x") = (271r2 J d 2k l eik.c·(x'.c-X"l) 

e • e • 
( 

iK ('''-A') iK (A"-A'») 

x 2iK. + [J(kJ.) - g(k.L)] 2iK. (47) 

and for z" > 0 > z', 

G(x' / x'') =R-1/ 2(271r2 J d2k.L eik.L· (x'.L-x'j) 

e i (K.+z"-K_ Z') 

X [Rg(k.L)K. + f(k.L)K_]. 
2iK.K_ 

(48) 

Comparing (47) and (48) with (40), (43), and (44) shows 
that if 

RK+ 
f(kJ.) = (49) 

RK. +K_ 

(50) 

with 

(51) 

then the lowest-order term in the series expansion for 
T II and T a reduces to the exact result for a flat inter­
face. This means that the solution for an interface of 
small roughness but with an arbitrarily strong discon­
tinuity will deviate only slightly from the Born term. 

In the Introduction it was pointed out that the integral 
equation for Tn and T a' whose formulation is now com­
plete, have additional desirable properties which will 
now be discussed. One nice property is that the Born 
term is also exact when the media become identical, 
independent of the roughness of the interface. This can 
be shown by direct calculation. 

When the media are identical 

R = 1, k t = k; 

thus 
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f(kJ.) :::: g(kJ.) :::: ~. 

Examination of the kernels appearing in (34) and (35) 
shows that they are identically zero in this limit and so 
the Born term is exact. It is not immediately obvious 
from the resulting expression for the Born term that 
this is true, so it is explicitly calculated in the Appendix. 
The result is 

G(x' I x") :::: Go(x - x"), 

where 

Go(x) == (211)-3 J d3k e
ik

•
x 

• 
k 2 - k2 + iE 

This means that the higher-order terms are small 
both for interfaces which have strong discontinuities 
with small roughness and any roughness with weak dis­
continuities. 

Another desirable property is that the effects of 
propagation in region II manifestly disappear in the 
limits which should yield a surface with Dirichlet or 
Neumann boundary conditions. 

The first limit of this type which will be examined is 

R == Z+/Z_ ~ 00, 

which corresponds to waves in region I scattering from 
a Neumann surface. In this limit f(kJ.) ~ 1 andg(kJ.)~O, 
such that 

Rg(k.t.) == R[J(kJ.) - 1] ~ - K_(kJ.)/K+(kJ.) 

Thus (35) becomes 

T.(k Ik") == O(Wl) - 2(211)3 J d 3k 1[(ka - kUt)/(k a - k1z)] 

x A(k- k1)GO-a(k1) T.(kl I k"). 

The solution of this equation vanishes as R-l since the 
resolvent is nonsingular. Thus (34) becomes 

k -k" 
T (k I k") == 2(211)-3 a a A(k - k") 

a k
z 

_ k~' 

J k - kl + 2(27T)-3 d3k1 a a 
k z - k1z 

X A(k - k1) GO+a (k1) Ta (k1 I k"). 

The Green's function for z' > h(x~) is given by (37), 
which becomes in this limit 

G(x I x") == Go+(x' - x") 

+ (27T)-3 J d 3k'd3k"ei(k"x'-k"'x")Go+(k') 

(52) 

X ik~Ta(k' I k")Go+(k"). (53) 

Similarly the Green's function for z' < h(xJ.) is given 
by (39). Using the result that T. == O(Wl), (39) gives 

G(x I x") == 0, z' < h(xU. 

Thus, as expected, there is not any propagation into 
region II in this limit. 

The next limit which will be examined is 

which corresponds to waves in region I scattering from 
a Dirichlet surface. In this limit g(kJ.) == 1 and 
flkJ.) ~O, such that 

R-l f(kJ.) == R-l[g(kJ.) - 1] ~ - K+(kJ.)/K_{kJ.)' 
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Thus (34) becomes 

Ta{k I k") == O(R) - 2(2"/1)3 J d3k 1[(k a - k1a)/(k z - k h )] 

X A(k - k1)GO-s(k1) Ts {kl/k"). 

The solution of this equation vanishes as R; thus (35) 
becomes 

(54) 

The Green's function for z' > h(x~,J is given by (37), 
which becomes in this limit 

G(x I x") == Go+(x' - x") 

+ (211,-3 J d3k'd3k"e Hl(·x'-k"·x") 

x Go+(k')Tn(k'1 k")Go+(k"). (55) 

Similarly the Green's function for z' < h(x'J is given by 
(39). Using the result that T a == O(R), (39) gives 

G(x' I x") == 0, z' < h(x~). 
Again, as expected, there is not any propagation into 
region II in this limit. 

(56) 

The last limit which will be examined is R finite and 
k~ ~ 00. This also yields a Dirichlet surface. In this 
limit 

f(k.J == 0, g(kJ.) == 1. (57) 

Examination of (34) shows that the kernels and the in­
homogeneous term vanish in this limit and that 

Ta(k I k") ~ 0 as k~ ~ 0 (58) 

if the integrations indicated in (34) are well-defined in 
this limit. This limit is rather tricky, and this is really 
only a reasonable argument for (57). Because of (57) 
and (58), this case reduces to the previous case where 
R == 0, and Eqs. (54)-(56), therefore, are also the limit­
ing equations when k~ -+ 00. 

This concludes the basic formulation of the problem. 
The important results which will be used in the next 
section are Eqs. (34), (35), (37), (39), (49), and (50). 

III. DIAGRAMMATIC RULES 

The integral equations (34) and (35) can be written in 
a compact form which makes transparent the construc­
tion of the diagrammatic rules for an arbitrary term in 
the series resulting from the iteration of (34) and (35). 
It is convenient to define several new quantities. Let 

TI{k I k') == Tz{k I k'), 1== 1,2,3, 

T4(k I k') == T.{k I k'), 

I, q == 1,2,3 

1 == 4, q == 1,2,3, 

1 == 1,2,3,q == 4, 

1 == q == 4, 

(59) 

(60) 

where the double superscripts on the left are associated 
with the double signs on the right of (60); 
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12 
(\>22(k) = 

lq 

l, q = 1,2,3, 

l=4,q=I,2,3, 

l= 1,2,3,q=4, 

l = q = 4, (61) 

V41 (k) = Vl4 (k) = 2(21T)-3k l /k"" l = 1,2,3, 

with all other components of Vlq(k) being zero, let 

-v 2 = q' 
1 {± iR 1/4±1/4k 

q ± R1/4 .1/4 , 

and finally let 

q=I,2,3, 

q = 4, 

l,q=I,2,3, 
{

f(k.J..)Olq, 

5'~(k) = g(k.J..) = 1- f(k.J..), l=4,q=4, 

5'lq(k)= 5'~4(k) = 0, q = 1,2,3, 

5'~q(k) = 0lq - 5'tq (k). 

With these definitions (34) and (35) become 
4 2 

(62) 

(63) 

(64) 

TI(klk')= 6 6 5'lp(k):D~~(klk')-V!(k'), (65) 
p.q=1 >=1 

where :D~q satisfies the integral equation 

:D;{(k Ik") = Vpq(k- k")OijA(k- k") 
4 2 

+ 6 6 J d 3 k1 T-j,.{k - k1Wm A(k - k1) 
•• 1=1 m.'F1 

x (\>mn(k ) :D"j (k I k") 5l 1 Iq 1 • (66) 

The connection between T I and the full Green's func­
tion can also be written in a compact form. Equations 
(37) and (39) together with the definitions just introduced 
give for region I, 

G(x' I x") = Go+(x' - x") + (21Tt3 J d3k' d3k" ei(k"x'-k"'x") 

x Go+(k')S1(k' I k")Go+(k"), (67) 

and for region II, 

G(x'i x") = (21Tt3 J d3k'd3k" ei(k"x'-k"'x") 

x Go_(k')S2(k' I k")Go+(k"), (68) 

where 
4 2 

sj(k I k") = ~ 6 -v/(k) 5'lp(k):D~~(k I k")-vl(k"). 
l,p,q=1 i=1 (69) 

Given the form of (66), the construction of the diagram­
matic rules for :D is straightforward. The rules follow 
from iterating (66), and they are shown in Fig. 2. Sum­
mation of the set of diagrams shown in Fig. 3 gives 
:D;~(k I k"). 

While the Green's function contains all the informa­
tion needed to construct the solution corresponding to 
an arbitrary distribution of sources in region I, it is 
often true that the sources and detectors are far enough 
removed from the interface that they can be taken to be 
at infinity. In this case (67) and (68) simplify consider­
ably since the problem is reduced to that of a superposi­
tion of plane waves incident on the interface. The re­
duction formula which connects the asymptotic scattered 
field with the incident field follows directly from re­
writing (67) and (68) and then using (4). Equation (67) 
can be written in coordinate space as 
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G(x' I x") = Go+(x' - x") 

+ (21T)3 J d3x 1d 3x 2 Go+(x' - x1)S1(x1 I x2)GO.(~-x"). 

Using (4) with z" > z' > h(x.J..), gives for region I, 

G(x'i x") = J d2k~d2k1 eik".J..'x,;, 

x Vi.e~ .. ' 02(k~ - k1) - i1Te ik 'zz' (l/k~)Sl(k' I k")] 

(70) 

where 

k~ = ..jk~ - k~2 + i€ , 
(71) 

k~ = - ..jk~ - k'{2 + i€ • 

Similarly (68) can be written in coordinate space as 

G(x' I x") 

= (21T)3 J d3x1d3x2GO_(x' - xl)S2(x1Ix2)GO+(~-x"). 

Using (4) with z" > h(x'.J..) > z' gives for region IT, 

G(x' I x") = J d2k~d2k1eiki·xi 
x [i7Te- ik'zz' (l/k~) S2(k' I k")]i eik".x"/87T2k~, (72) 

where 

k~ = ..jk~ - k~2 + iE, 
(73) 

The scattering matrix sj(kout I kin) which connects 
an asymptotic incoming plane wave in region I with 
asymptotic outgoing plane waves in regions I or II 
(j = 1 or 2, respectively) can be directly read from (70) 
and (72). For asymptotic states with the normalization 

J d2x.J.. <Pt· (x,u z ) <Pk" (x.J..'z) = 02(k~ - kD (74) .J.. .J.. 

I 
( 

I 
( 

I' 
, <-7 
tf' __ , 

k-k 

FIG. 2. The propagator cpr~n(k) is defined by (60) and (61). In (60) and 
(61) the quantities Go;, Go, 0' GOf "B./' and IJ appear and they are defin­
ed in (24)-(26) and (49)-(51). The vertex function V,,,(k) is defined in 
(63). Multiplication of the factors constituting a diagram, integration 
over the internal momenta associated with CP/'q', and summation over 
internal indices yields the value of the diagram. 

~ 
k k' k k, k' 

= ~ + < , < , ( + . 
1- 1- 1-

* * * 
FIG.3. Diagrammatic representation of the iterative solution of (66) 
for:D. The full Green's function can be calculated from :D using 
(67)-(69), (63), and (64). 
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the scattering matrix in region I is 

Sl(kout I kin) = - i1T(kout • i .. )-ISI(kout I kin)' 

where 

k - kl 2 2 ~ in - l.in - vk+ - kl. in til' 

and in region IT is 

:)2(kout I kin) = i1T(kout • i .. )-!S2(~ut I kin) 

where 

k out = kl. out - ,JlrJ - kiouti ... 

That is, if the incident wave is of the form 

cP in (X) = J d 2 k l. a in (kl.) eiOtl.·Xl. -".~ -ki") 

and the scattered wave in region I is of the form 

cp l (x) - J d 2 k al (k) eHkl.·xl. +/ k~ -kif: .. ) out - l. out :L 

and in region II is of the form 

cp2 (x)=jd2k a2 (k)ei(kl.·X.L-Jk~-kl") 
out l. out ' 

then 

abut(kl.) = S..{ (kl k')atn(k'), j = 1,2, 

where + E indicates an outgoing propagator, and 

k .. =±,Jk~-kL j={!, 

1'kl 
~ 
-.!-k2 

1'kl 
k2~~ 

-.!-k3 

etc. 

--7 

--7 

--7 

--7 

exp {-~f(O)kn 

p, ..... Ck) 
1" 

P''''''(K) 
1" 

VJ" (K'-K ) 8"''' 

€>O 

€<O 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

FIG. 4. Diagrammatic rules for \11:\)). Each diagram in the series has 
equal weight and is constructed by multiplying the indicated factors 
associated with the lines and vertices of the diagrams. Integration 
over three momenta k associated with internal CP lines and summation 
over internal indices completes the construction of the term in the 
series associated with the diagram. The propagator CPr;," (k) is defined 
by (60) and (61). In (60) and (61) the quantities GOt' GOt '" GOt as.! and 
{( appear and they are defined in (24)-(26) and (49)-(51). The vertex 
function l't~(k) is defined in (63). The vertex function ~,({k}n) is defined 
in (88)-(90) and explicitly displayed in (81)-(83) for n = 1.2,3. 
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k' = - ,Jk2 - k'2 2: - J... 

Since the complex conjugate solution G*{x I x) is 
needed in order to be able to calculate intensities, it is 
necessary to state the rules for construction of G*{x I x). 
Examination of (la) and (lb) shows that G*{x I x) and 
G{x I x) satisfy the same partial differential equation. 
The only difference is in the radiation condition at in­
finity. Thus the integral equation for G*(x I x') is the 
same as that for G{x I x) except that E is replaced by 
- E. It is also convenient to change the Sign convention 
on the Fourier transform. Thus (18) becomes 

Z*(x' Ix") = (21T)-6 j d3k'd3k" ei(k"x'-k"'x") 

x Z(- k' 1- kIf) as E ~ - E, (83) 

and similarly for (19) and (20). With these changes the 
manipulations leading to the series expansion for 
G*{x ! x') are identical to those already developed for 
G(x I x"). This completes the discussion of scattering 
from a deterministic surface. 

The statistical properties of the fields scattered from 
a random interface will now-be considered. It will be 
assumed that h(xl.) has multivariate Gaussian statistics 
and that averages over xl. can be replaced by ensemble 
averages. The statistical quantities which are of in­
terest are the correlation functions of the scattered 
field. Since the scattered field can be expressed in 
terms of SiCk I k') via (67) and (68) or (75) and (77), it 
is only necessary to consider ensemble averages of the 
form 

where the ± E indicates the propagator to be used. A 
cluster expansion for these expectation values can be 
easily found because SiCk I k') is expressible as a 
series where the only functional dependence on h(xl.) 
arises through A (k) whose cluster expansion is well­
known.I .S Due to the structural Similarity of the series 
expansion for ~;t(k I k') to the series expansion for 
scattering from a Neumann surface,l the diagrammatic 
rules for moments of ~j~(k I k') can be easily written 
down and are shown in Fig.4. The vertex functions 
R I ,R2, and R3 are given by 

(84) 

R2(k1'~) = j d2yl. exp(- ik2l.· Yl.) 
x {exp[-r(Yl.)k12 k2z ] -I}, (85) 

R 3(k1' k2' k3) 

= J d2yU d 2y2l. exp[- i(k!l.· Yll. + ~l. ·Y2l.)] 

X {exp [- r(y1.L - Y2l.) k 12k 2 .. - r(YIl.) k 12k 3 .. 

- r(Y2l.) k211 k 3z ] - exp[- r(YIl. - Y2l.) k 12k 2 .. ] 

- exp [- r(YIl.) k12 k 3 .. ] - exp [- r(Y2.L) k 2 "k3 .. ] + 2}, 
(86) 

where 

r(xll. - ~l.) = (h(xu ) h(~l.» (87) 

is the height correlation function for the surface. The 
general expression for R n is! 

Rn({k} .. ) = exp[~ reO) j~l k; .. ] 

x j d 2yll.··· d 2Ynl. 02(Ynl.) exp(- i t kjl.' Yil.) 
J=l 

x K n( {k z, Y In), (88) 
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where {k}n indicates a set with n members, and where 
KII is defined recursively by 

K.({k", xJ n) = F n({k z , xJ n) 

n M 

~ ~ ~ n Km.({kjz,xjJm.), (89) 
j perm M=2 lmilM i=1' } 

where 

Fn({kz,xJn)exp[-~.i kjzr(Xj1.-Xjl.)kl"]' (90) 
}, 1=1 

The sum 6{ } is over all unordered M element sets 
miM 

{mJM such that ~f=1 mi = nand 6 j perm denotes a 
sum over all different labelings j of the unordered sets 
{k j ", Xjl.} m. with j = 1, .. " n. The vertex function Rn 

can be rath~r complicated for large n. In practice only 
a few lowest-order vertex functions would be retained. 

Once the moments of :O;{(k"k') are known, the 
moments of the Green's function can be found. It is 
necessary to insert a word of caution about this proce­
dure. In the ensemble of multivariate Gaussian sur­
faces which is being considered here, there always can 
be found a surface whose excursions are very large. 
This means that on ensemble averaging the condition 
that the source be in region I will be violated to a degree 
depending on the distance from the surface to the source 
and detector. If the source and detector are removed 
far from the surface then this will occur with a vanish­
ingly small probability. In most experimental situations 
the source and detector are completely in one or the 
other regions. This apparent difference is due to the 
finite statistical sample inherent in an experiment, and 
any comparison which is sensitive to this difference 
should be ignored. 

As an example of the application of these rules the 
incoherent back-scattered and transmitted intensity in 
the asymptotic region will be calculated in the lowest­
order approximation. The incident wave normalization 
will be chosen to be 

J d2x 1. CPtin)k1. (x) cp (in)k~ (x) = 02 (k1. - k~). 

This means that 

ain(k1.) = (21T t 1 02(k1. - k(in)1.) 

in Eq. (79). Equations (81) and (82) then give 

(cp~~t (x) CP6ut(x'» = (21Tt2 J d 2k 1. d2k~ 

x ei(k.·x-k'·x') (3},(klk in) 31,(- kl- kin»' (91) 

Now 3 can be related to:O through (75), (77), and (69), thus 

(3!,(klk in) 3i,(- k' 1- kin» 
4 2 
I; ~ \}Ii (k) lfl~(k) \}I~{kin) 

k~ l,p,q=1 i=1 

(92) 

Applying the rules just derived to the lowest-order 
apprOximation for the incoherent part of (:0+,:0_,) which 
corresponds to the diagram shown in Fig. 5, gives 
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k 

E-<-----tl,.-----« 
+ + 

l' 
9 
W 

~<-----tl • .-----« 

FIG.5. The diagram corresponding to the lowest-order incoherently 
scattered intensity. 

(:o~1q{k I kin).,:OFI,(- k' 1- kinL,) 

= (21T)2 02(k1. - k~)e-r(O)(k-kinf Oil Oi'1 

X R 2 (k- k in ,- k + kin) 

X Vpq{k - kin) Vp'q' (- k' + kin)' 

Substituting this into (91) and (92), then using (62)- (64) 
and (85) gives for the mutual coherence function 

1 1 
(cp~:t(x) Cp~ut(x'» = (21Tt2 J d 2k1. eik.(x-x')k~2 

X e-r(OHk,,-k(lnh)2(R-1/4±1/4 k· (k- kin) !(k1.) 

k" - k(in):;: 

+ R1/4'f1/4 (k- kin)' kin g{k1.)\ 2 (21Tr2 

k" - k(in) " 'J 
X J d 2y1. e i (k.1.- k (in)1.)·Y1.(e r (Y1.)(k,,-k(in),,)2 -1). 

The mutual coherence function is related to the intensity 
scattered in a particular direction by 

(cp~;t(x)CP~ut(x'» = (21Tt2 J d 2k1. eik·(x-x')/j(k). 

Thus 
1 

J2{k) = [k" (k" - k (in);.) r2 [R- 1
/

4 ±1/4 k· (k - kin)! (k1.) 

+ R1/4>1/4(k_ kin) .king(k1.)]2 

X (21Tr2 J d2Yl.e i(k1.-k (1n)1.)·Y1.(e r (YJ.)(k,,-k(1n)z)2 -1), 

(93) 
whereR = Z.;Z_ and (49)-(51) give!(kJ andg(kJ. In 
a similar way the lowest-order coherently scattered in­
tensity, corresponding to the diagram shown in Fig. 6, 
can be shown to be given by 

1 
/2{k) = [k "(k,, - k (in) ,,) ]-2 [W1/4 ±1/4 k· (k - k in )!(k1.) 

+ R1/4>1/4 (k- kin)' k in g(k1.)]2 02(k1. - k(in)1.)' 
(94) 

Due to the fact that the diagrammatic rules have the 
same connectivity structure as those for the hard sur­
face,! the classification procedure in terms of connec­
ted and disconnected diagrams and partial summation 
in terms of linear integral equations can be carried out 
in an identical manner here. A diagram is disconnected 
if it can be broken into two parts not connected to each 
other by any lines, by removing one propagator line 
(9z":t (k) from each of the solid lines that flow continuously 
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k 

+-<----, ------« 
+ If' + 

6 

~<----, -------« 

-I<' ~ 
6 

-k-In 

FIG. 6. The diagram corresponding to the lowest-order coherently 
scattered intensity. 

through the diagram. A connected diagram is one that 
is not disconnected. 

Examination of the series for <~) shows that one can 
partially sum the series to give the integral equation 

<~ij (k'lk"»= e ii (k'lk") 'Pq pq 
2 4 

+ L; L; J d 3 k et1(k'lk) 
m.n=l l.s=l 

<97 .... (k)(~:'t(k I k"» 
(95) 

wh~.re e ~{(k I k') is the sum of the connected parts of 
<~f'~(k I k'». Actually (~5) is a one-dimensional integ~ 
ra equation because ep~ (k I k') contains a factor of 
02(k.L - k~). This can be seen directly from the rules 
for (~) and is due to the translational invariance of the 
surface statistics in the x.L plane. Letting 

e;~ (k I k') = 02(k.L - k~) C;{ (k z I k~), 

<~;{(k I k'» = 02(k.L - k~)D;~(k .. 1 k~), 

(95) then gives 

Dij(k' I k") = Cij(k' I k") pq z z pq z z 
2 4 

+ ~ 1 ~ J dkz C~ (k~ I k z) <91~ m(kz) D::/ (kz I k;), 
m.n- l.s-1 (96) 

where the k.L dependence of the quantities appearing in 
(96) has not been shown since k.L is no more than a 
parameter in (96). 

Similarly examination of the series for (X(I) shows 
that one can partially sum the series to give the integ­
ral equation 

<~1~ (k I k i ) ~1',~:(k' I ki» = <~1~ (k I ki»(~1:;:'(k' I ki» 
2 4 

+ L; L) J d 3k 2d 3k2 J( !I;i;ns~: (k, k' I k2, k2) 
n,n';::1 s,8':=:1 

X JOn m 0sq 03(k2 - k j ) On'm' 0 s'q' 03(k2 - kj) 
2 4 

+ L; L; [<9;1(k2) (~t ~ (k21 k j » On' m' OS'q' 03 (k2 - ki) 
j=l 1'=1 

+ Onm Osq03~ - ki)<9:'t(k2)<~t;:'(k2 I kj) 
2 4 . . 

+ E L) <9:~(k2) <9;';.: (k2) 
j'=l 1"=1 

X (~:;'(k21 ki)~t:;:'(k21 ki»]), (97) 

where 
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2 4 

J(~I;;,~;,:, (k,k' I k2,k2) =.6 .6 J d3k1d3ki 
i,i';::l r,1";::l 

X C~l k <~1ns(klk1»<9=t(k1)+0IjOpr03(k-k1~ 
X C~ S~l <~!',~: (k' I kiD <9;;r (kl) 

I'·' (k' k')~ +0 1 0p'1" 03 - 1') 

ii" mm' I ) X err': qq' (k1, ki k2• k2 , (98) 

wit!! et~'/; ;;' (k~ k', I klO ki) being the connected part of 
(~~;'(k Ik1)~~':: (k' Ik]). Equation (97) can be put 
in a better form by letting 

..-11'; mm'(k k' I k k') 
:J.PP';qq" i, t 

= <~~~(k I k t ) ~1:;'(k I k;» 

- (~1~ (k I k i» < ~1',~,' (k' I ki»· (99) 

'I is the incoherent part of <~~) and is directly related 
to the incoherently scattered intensity. With this substi­
tution, (97) becomes 

..-11'; mm' (k k' I k k') 
:l.PP';qq" i' i 

2 4 
= L) L) J d3k2d3k2J(1~,;~~,'(k,k' I k2 ,k2) 

n t ,,'::::15,s'=1 

X C~l 1'~1 <9:t (k2)( ~;;' ~ - k j» 
+ Onm 0 Sq03(k2 - k i ») 

( 
2 4 n'j' i'm' 

Xi~l 1''f
1 

<9s'1" (k2)(~1"q' (k2 - k i » 

+ On'm'OS'q,03(k2 -k;») 

2 4 

+ L; L) J d3k2d3k2J(;I;;;~"':,(k,k'lk2,k2) 
n , n'=1 s,s'=1 

..-nn'·mm'(1c k' I k k') 
X :L sS';qq' ""'2' 2 i' i • (100) 

Equations (98) and (100) could be further Simplified by 
explicitly removing the two-dimensional 0 function fac­
tors from <~) , e, J( and 'I. These factors mean that 
(98) is in reality a two-dimensional integral and (100) 
is a four-dimensional integral equation. 

IV. CONCLUDING REMARKS 

The problem of a scalar wave scattering from a ran­
dom interface between two isotropiC homogeneous media 
has been solved in terms of a series expansion for the 
moments of the scattered field. The lowest-order term 
for the scattered intensity as given in (93) and (94) 
differs from the Kirchhoff approximation, but it still 
retains the desirable feature that it becomes exact when 
the surface roughness approaches zero or the discon­
tinuity of the interface is weak. 

The series expansion has a diagrammatic represen­
tation which is useful for formal partial summation of 
the series to give linear or nonlinear integral equations 
whose solution can then be undertaken. Examples of 
partial summation in terms of linear integral equations 
are given in (96) and (100). One way to generate approxi­
mate solutions would be to apprOximate the kernel of an 
integral equation such as (96) and then to solve it either 
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analytically or numerically. Good experimental data 
using carefully controlled interfaces would be very use­
ful in developing such approximation schemes. 

APPENDIX 

When the properties of the media are the same 

and (34), (35), (37), and (39) give for z' > h(~), z"> h(x1) 

G(x' I x") = Go(x' - x") + i(211t6M(x' I x") (A1) 

and for z' < h(x:), z" > h(x1), 

G(x' I x") = - i(211t 6 M(x' I x"), (A2) 

where 

M(x'i x") = J d 3k'd3k"e i (J('x'-k"'x") 

x [(k2 _ k'2 + iE)-l_ (k2 _ k"2 + iE)-lJ A (k' - k") • 
k~ - k~ 

(A3) 
Using (21) it can be shown that 

J d3k"e-il<"x" A(k' - k") =_ (211)2 e -ik"X" 

k~ - k~ 

x J dk e-ik",("'''-hU<J.''» ( a + 1- a ) 
Z k' k .' (A4) 

z - ZE z + ZE 

Jd3k'eik"X' A(k'-k") = (211)2 e -ik"'x' 

k~ - k; 

x J dk,. eik,.(Z'-h(X.L'»( a. + 1 - a) (A5) 
k z - ZE k z + iE ' 

where the factors a and 1 - a indicate that the pole at 
k~ = k~ has been partially split above and below the 
contour, i.e., 
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1 a 1-a +-----= 
k~ - k'z - iE 

This has been done to explicitly demonstrate indepen­
dence of the contour choice at this pole. Performing the 
k z integration in (A4) and (A5) using 

e ikZZ 
J dk 

z k ± . 
iii ZE 

± 211i8(± z) 

gives for z" > h(x1) 

M(x' I x") = (211)6 iGo(x' - x") 8(- z' + h(x{». 

Combining this result with (A1) and (A2) gives 

G(x' Ix") = Go(x' - x"). 
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Natural basis expansion of functions of the distance 
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A method of obtaining expansions of functions of r 12 utilizing solutions of separable differential 
operators which annihilate the functions is presented. Expansions of rl~ in spherical polar and 
confocal elliptic coordinates are obtained in terms of solutions of a generalized Laplace operator. 

I. INTRODUCTION 

In the following we present a somewhat novel method 
of obtaining expansions of functions of the distance be­
tween two points, !(r12 ). The technique consists of con­
structing separable differential operators A which an­
nihilate the function of interest, 

(1) 

The solutions of the general equation A 1jJ = 0 obtained by 
separation of variables are then used as a basis for the 
expansions with coefficients obtained by applying the ap­
propriate boundary conditions. 

The technique is demonstrated by obtaining expansions 
of r~ in spherical polar and confocal elliptic coordinates 
by using the solutions of a generalized Laplacian 
operator. 

II. OPERATOR CONSTRUCTION AND PROPERTIES 

Consider the Laplace equation 

V2(I/r12 )=O. (2) 

As is well known, the solution to this equation can be 
written as a linear combination of solutions of the gen­
eral equation ~1jJ = 0 obtained by separation of variables. 
Laplace's and Neumann's expansions of l/r12 utilize this 
fact. 1 The operator V2 can be viewed as an annihilator 
of the function l/r12 • Similarly, if we can find a sep­
arable second-order differential operator with the prop­
erty that it annihilates r1~' then the separable solutions 
of the operator can serve as a basiS for the expansion 
for the function. 

Such an operator can be constructed in the following 
manner. Consider the differential operator expressed 
in spherical coordinates, 

(3) 

where cP = CP1 - CP2' This operator has the property that 

(4) 

where r 12 = [ri + -ri - 2r1r2(cos81 cos82 + sin 81sin82 coscp) ]1/2. 
Operating on both sides of Eq. (4) with the Laplacian 
operator gives the result 

V2[9'N(I/rI2)] =9'N V2~I/rI2) + 2V !EN' V(I/rI2) (5) 
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Applying Laplace's equation and rearranging, we find 

V 2 [!EN (l/rI2)] - 2V!EN • V (l/rI2 ) - (V2 !EN) (l/rI2) = O. 

(6) 

Carrying out the indicated operations, rearranging into 
the form of a differential operator operating on !EN(I/rI2 ), 

and introducing Eq. (4) gives 

where we have defined for convenience in notation 
x1=cos81' andy=coscp. Settingn=-2N-l, rear­
ranging terms and defining the operator 

(7) 

~n=~ ____ +_ (l-~)~+(n-l)x-0
2 (n - 1) 0 1 (0

2 
0 ) 

ott rl orl ri I o~ I oX1 
(8) 

gives the result 

(9) 

The operator ~n annihilates the nth power of r 12' Equa­
tion (9) holds for all positive and negative integer and 
noninteger values n, reducing to Laplace's equation for 
n = - 1. It can thus be considered to be a generalized 
Laplace equation. By inspection it can be seen that ~n is 
separable in the variables rl' Xl' and y. Eigenfunctions 
associated with ~n are products of solutions of the three 
separated equations, 

and 

(12) 

where Ay and Ax are separation constants and <P, P, and 
R are eigenfunctions. 

Copyright © 1974 American Institute of Physics 114 
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III. SOLUTIONS TO r l , Xl, AND Y EQUATIONS 

By making the substitution Ay= - m(m - n - 1), Eq. (10) 
is seen to reduce to Gegenbauer's equation2 with 
solutions 

Im/21 
q,~(y)= 6 D~,,,ym'2", (13) 

u.=o 

where [m/2] indicates the integer part of m/2. The coef­
ficients D~,,, have the definition 

D~,,, = [(m - 2j.L)! (2j.L)! !p(n - 2m + 2j.L, j.L)].I, 

with the function p defined as 

binteger >0 

(14) 

p(a, b) ={(a + l)(a - 1) ... (a - 2b + 3), 
1, b =0. (15) 

Equation (13) differs from the usual Gegenbauer polyno­
mials C~ "+1) /2 by a normalization factor. Explicitly 

This choice of normalization insures that the q,:!. are 
proper ly defined for n = - 1. 

(16) 

A polynomial solution to Eq. (11) can be determined 
by substituting Ay= - m(m - n - 1). However, it is first 
necessary to remove the singularity at the point 
(1- XDl/2=0 by making the substitution P=(l- xW" P, 
where Q is an undetermined variable. This leads to an 
indicial equation with solution Q = m/2. 

Substituting P= (1- ~)m/2 Pinto Eq. (11) we obtain 
the new equation 

~P dP -
(l-~)-d 2 +(n-2m-1)xl -

d 
-[m(m-n)+Ax]P=O. 

Xl Xl 

(17) 

This is just Gegenbauer's equation. Thus, the general 
solutions may be written as 

P =p~," = (- l),·m(1- ~)m/2 p(n - 2m, 1- m)q,7:~m'l, 

(18) 

with Ax= -1(1- n). These functions reduce to associated 
Legendre functions when n = - 1. Equation (11) is thus 
a generalization of the associated Legendre equation. In 
order to obtain proper solutions to the r~2 expansion 
when n is an even integer, it is necessary to use the 
following normalized version of the functions given in 
Eq. (18): 

g>'!"" = (- l),·m[n(n - 2) ... (n - [l + m]+ + 2)],1 P'!"" 
I (l'm)/21 (19) 

= (1 - ~)m /2 6 d7:~ x~·m'2" , 
",=0 

where 

d"'" _ (n - [1 + m ]+) (n - [1 + m]+ - 2) ... (n - 21 + 2j.L + 2) 
',m- (l-m-2j.L)!(2j.L)!! . 

(20) 

The symbol [1 + m]+ is defined by the equation 

[l+m]*=I+m±OE(I+m), (21) 

where the parity function OE(L) equals zero when L is 
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an even integer and one when L is an odd integer. 

A solution to the radial equation can be obtained by 
substituting Ax= -1(1- n) into Eq. (12). We find, R =rI. 
A linearly independent second solution is rj'+". 

IV. EXPANSION OF r12 IN SPHERICAL COORDINATES 

We are now in a position to expand r~2 in terms of the 
eigenfunctions associated with the .:l" operator. These 
have the form 

(22) 

and 

(23) 

Assuming r
l 
< r2 and applying boundary conditions on rl' 

we may thus write 

r~2= tt c,!,(2)r~9"'!""(Xl)q,::,(y), (24) 
m=O l=m 

where c,!,(2) is a function of the coordinates of r2 , x2 only. 
Similarly 

r" = t f'- dm(l)r"'+"g>m,"(x )q,"(y) (25) 
12 m=O l~m I' 2 I' 2 m , 

where d~ (1) is a function of rl' Xl only. Comparing coef­
ficients of q,::,(y) yields the expansion 

where the g,7.' s are undetermined constants. Since 
r';2(X1 , x2) = r~2(x2' Xl)' 

~" (r!/rr'") =~ ,(rI' /r~'"), 

(26) 

(27) 

which implies that g'!'" = o",lt!m' where the n was sup­
pressed in earlier coefficients for convenience in 
notation. Thus 

~ I r' 
r';2 =6 6lt!m ....:..Lr ,·"9"'!""(X1 )9"'!""(X2) q,::,(y). 

,=0 mz() 2 
(28) 

To determine It!m' we rotate r2 to fall along the z axis. 
Under these conditions x2 equals one and Xl equals COSl/12 

and the expansion is independent of y. Hence only the 
terms with m = 0 remain and 

(29) 

The tt;o coefficients can now be obtained by setting 
cosl/12 = 1, expanding r';2 in a power series in rtlr2' and 
comparing coefficients of rUr~'". The required expansion 
is 

I I .. r' 
r';2= r l -r2 "=6(-1)'(7)-7:;;· (30) 

'=0 r 2 

Comparing Eqs. (29) and (30) utilizing the fact that 
#,'"(1) = [(n - l)(n - 3) ... (n - [l]' + 1)l!1! obtained by 
induction from Eq. (19), we find 

g: _ (- l)'l !n(n - 2) ... (n + 2 - [1]+) 
/0- [(n -l)(n - 3) ... (n + 1- [z]-)] 

and 

It!o 9"~ ," (1) ",~,n (cosl/12) = P~," (cosl/12). 

Thus 

(31) 

(32) 

(33) 
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Gegenbauer's expansion2 of inverse powers of r 12 may be 
obtained from Eq. (33) by setting n = - 2v and making the 
identification PI,n = Cj"/2. 

The remaining g7m' s in Eq. (28) may be obtained by 
first equating coefficients of Eqs. (33) and (28), 

We next note that for Xl' X 2 large 

p~,n( COSli12) = c7 ,ox~ x~ (1- y)', 

where c~m =( - l)'[n(n - 2) ... (n - [l]+ + 2)] d7o". 

Also 

and 
Im/21 

(34) 

(35) 

(36) 

<I>~(y) = ~ D::', .. ym-2". (37) 

Substituting Eqs. (35), (36), and (37) into (34) and equa­
ting coefficients of powers of y leads to the set of 
equations, 

Ii /21 

(- 1)1-} (J) = 6 a7,I-J+2k D7-j+2k,k' 
k=O 

(38) 

with 

a~m = (- l)m g>;m [d~~Nc~,o' (39) 

The tt:m coefficients can be obtained from Eq. (38) by 
induction. The result is 

(- 1) 1 (l - m) ! n( n - 2)( n - 4) ... (n + 2 - [l + m ]+) 
tt:m= (n- 2m -l)(n- 2m - 3) .. . (n+ 1- [z +mh 

(40) 

Equation (28) holds for all n except positive odd integers. 
For these cases, due to the appearance of accidental 
degeneraCies, the <1>;:" s do not form a complete set. For 
positive even integers, the expansion truncates. This 
fact is evident from the g>;m definition. Note that Eq. (33) 
is valid for all n. 

V. ONE CENTER EXPANSION OF r'l2 IN 
SPHERICAL HARMONICS 

From Eq. (33), it is a relatively simple matter to ob­
tain an expansion of r~ in spherical harmonics. To do 
this we first substitute the expansion in powers of 
COSli12 of PI,n into Eq. (33) giving 

(41) 

We now introduce the expansion3 

j 0' 1~1 (2j-4k+1)PJ-2k(cosli12) 
COSli12 =J· ~ (2k)!!(2j-2k+l)!! ' 

(42) 

giving 

.. r' 11/21 

r;'2 = 6 --.:..Lr,-n 6 C~m 
I=Q 2 moO 

(43) 

1 (I-2m)/21 

x[l- 2m]! 6 
k=O 

(2l- 4m - 4k + 1) p(C<>S812) 
(2k)! ! (21- 4m - 2k + I)!! 1-2m-2k' 
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Substituting X = 1 - 2m - 2k and reordering summation 
indices gives 

(44) 

where 1(2) indicates the summation proceeds in steps of 
two and 

bn = (_ 1)' p(n, (1 - X)/2)p(n - 1, (X + 1 - 1)/2) . 
U (l + X + 1)! ! (l - X)! ! 

(45) 

with b~, = 0xoo 10' 

Under certain conditions, the 1 and X summations trun­
cate. For even positive n, X < n/2 and X'" 1 "'n - X. For 
odd integer n greater than - 3, X '" 1 '" n + 1 + X. These 
two cases can be stated explicitly as 

N 

~: = 6 (2X + 1) P x (COSliI2) (46) 
x=o 

and 

(47) 

Introducing the addition theorem in spherical harmonics 
for PX(COSli12) leads to the expression 

(48) 

This expression is equivalent to an expansion derived 
recently by Sack. 4 

VI. EXPANSION OF r'l2 IN CONFOCAL 
ELLIPTIC COORDINATES 

In confocal elliptic coordinates, the annihilator ~n has 
the form, 

3 (1 1 )(/ 2 3
2 

+(n-lml a1h" + ~~ -1 + 1-1)~ ~1-Y)a?" 

+ny :y)] , (49) 

where R is the distance between the foci of the ellipse 
defining ~1 and 1)1' This operator separates into y and 1)1 
equations identical to Eqs. (10) and (11) and the ~l 
equation 

(50) 

where X. = -l(l- n). Equation (50) differs only by a sign 
from Eq. (11). The solution has the form 

A 1 (I-2m)/2] 

.9I'7,n(~1)=(~~ _1)m/2 . L d1;,." ~f-m-2" • 
u=o 

(51) 
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Since the ~ 1 coordinate ranges from one to infinity, in 
order for the eigenfunctions of Eq. (50) to serve as 
basis functions in the expansion of r~2' both the first 
solutions, ~':'," and the second solutions, QT'" are re­
quired. The latter may be obtained by standard tech­
niques. 3 In terms of Gegenbauer functions of the second 
kind, 2 D~, 

Qm," (t) = (2 '+
1
) 1\1 - n/2 + 1) (t2 _ l)m/2 Dn-2m (t) 

I " r(-n/2)r(1-n) <; I-m <;. 
(52) 

As a power series in ~, 

QT'"W = (e - l)m/2 ~-I-m-" 

.. 1 ,,(n-l-m)(n-1-m-l) ... (n+l-1-m-2j..1.) 
x E(- ) (2j..1.)! !(n - 21- 2)(n- 21- 4) ... (n- 21- 2j..1.) 

. ~-2". (53) 

The functions r~2 can thus be expanded in terms of the 
basis functions 

X7m(l) = [AT ~"(~1) + BT QT'"(U]a»T"(lh)<I>~(y) (54) 

and 

X7m(2) = [eT ;'T"(~2) + DT QT" (~2) ]a»T"(1h) <I>~(y). (55) 

Assuming ~1 < ~2 and noting that QT" has a logarithmic 
singularity at ~1 = 1, we may write 

.. .. A 

r~2 = ~ 6«;' (2) a»T"(Ua»,m" (lh) <1>::' (y), (56) 
m=O l=m 

where the tr;' coefficient...s are functions of coordinates 
~2' 'IJ2 only. Noting that.'l'T'" approaches infinity for large 
values of the argument, we write 

~2=t t dT(I)QT"(~2)a»':'"('IJ2)<I>::'(y), (57) 
m=O l=m 

where the dT coefficients are functions of coordinates 
~1' 'Ill only. Applying arguments similar to those given 
in Sec. IV with respect to the interchange of 'Ill and 'IJ2 
we find 

.. I A 
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RU2 - r, 'IJ - cosB, (59) 

while y remains unchanged. Using Eqs. (51) and (53), 
we find 

1~~ QT" (~2)~T" (~1)9'T"('IJ1)a»':'"('IJ2) <I>'::(y) 

= (2/R)" d7;"0 (rUrt")a»T" (x1)a»T" (x2) <I>~(y). (60) 

Thus, in view of Eqs. (28), (58), and (60), 

A7m = (R/2)"g,"m/d7:· (61) 

Equation (58) is valid for all n except positive integers 
and can be shown to reduce to an expansion obtained by 
Wolniewicz5 for negative n. 

VII. CONFOCAL ELLIPTIC EXPANSION OF"h 
IN SPHERICAL HARMONICS 

Using the results of previous sections we can derive 
an expansion of r';2 involving spherical harmonic func­
tions of 'Ill and 'IJ2' To do this we introduce the expres­
sion [derived from Eq. (42) by applying (1 - ~)U dU / dx-a 

1J/21 (2j+2j..1.-4k+l) " 
xi =j!(I-~r" Po (2k)! !(2j + 2j..1. _ 2k + I)!! PJ+"_2~(X1) 

(j..I. > 0) (62) 

where 

P"=(I_~)"/2 ~ P 
~ 1 dx't ~ 

(63) 

into Eq. (19) and the expression 

(64) 

into Eq. (37). These lead after some manipulation to the 
relationships 

I 

9'7'" (xJ = B (65) 
~(2 )=OE (I-m)." 

r~2=6 6 A;mQT"(~2)a»T"(~1)a»T"('IJ1)a»T"('IJ2)<I>~(Y), (58) and 
1=0 moO 

where the A7m are undetermined coefficients. To deter­
mine these, we take the limit R - 0 and compare with 
Eq. (28). In this limit, 

<I>~ (y) = j] G:" exp(ij..l.cp), (66) 
,,(2)=-m 

where 

I"'m=(2:>.. + 1)6(-l)a(n - [1 + m]+)(n - [1 +m]+ - 2) ... (n- 21 + 20'+ 2)6 (- 1)(J-I+m)/2jl ( (m - I j..I.l)/2 ) 
~"a (2O')!!(1-m-2O')! J (j+lj..I.l-:>")!!(:>"+j+lj..I.l+I)!! (j-1+m+2O')/2 

(67) 

and 

Gm"- (n+l)(n-l) ... (n+3-m+ 1 j..I. I) 
" - (m+j..I.)!(m-j..I.)!(n+l-m-lj..I.l)(n-1-m-lj..I.l) ... (n+3-2m) (68) 

The limits on 0' and j in Eq. (67) are 

0"" 0' "" min{(l- :>")/2, [(1- m)/2]}, 

and 

J. Math. Phys .• Vol. 15. No.1, January 1974 

(69) 
A sum rule may exist for Eq. (67) but we have not found 
one. We now introduce Eqs. (65) and (66) into Eq. (58) 
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and obtain after some manipulation 

1"'12= L; T(nlm;U'Il) 
ImU'u 

(70) 

where 

T(nlm ;U' Il) = 41T A ~m G ~m 

X .-.- • nlm nlm 
( 

(A+II)!(A'+II)' )1/2 
(A-Il)!(A'-Il)!(2A+1)(2A'+1) [AU [A'u' 

(71) 

withO.,,;l.,,;oo, O.,,;m.,,;l, OE(l-m)"';A(2)"';l, OE(l-m) 
"';A'(2) .,,;l, and 

max{- m, - A +OE(l- m), - A' +OE(l- m)} 

"';1l.,,;min{m,A-OE(l-m),A' -OE(l-m)}. (72) 

Equation (70) holds for all n except positive even inte­
gers. Clearly, the same technique could be used to ex­
press Q,;,na":,n in terms of associated Legendre functions 
of the first and second kind. The resultant expansion 
would have all of the n dependence in the coefficients. 
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VIII. CONCLUSION 

We have utilized an annihilator method to obtain ex­
pansions of ~ in spherical and confocal elliptic co­
ordinates. This method is quite general and can be used 
to obtain expansions of other functions of r 12 in various 
coordinate systems. We are currently working on fur­
ther applications. We are also investigating in more 
detail the properties of the generalized Laplacian 
operator derived herein. 
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The recognition of antiunitary symmetry in a quantum mechanical system is considered in relation 
to selection rules. It is shown that the interaction of unitary symmetry and the anti-invariance of 
matrix elements under anti unitary operators can produce extra selection rules in magnetic systems. 
The criteria obtained for the occurrence of these additional selection rules are presented in the form 
of group character tests, and in a special case provide an application for the symmetrized and 
antisymmetrized squares of group representations. 

1. INTRODUCTION 

The theory of selection rules is concerned with the 
vanishing or nonvanishing of matrix elements purely on 
the basis of symmetry. In a quantum mechanical con­
text, it is usual to consider matrix elements of the form 

(1. 1) 

where the factors in the integrand are functions or oper­
ators, as appropriate, having known transformation 
properties under a unitary symmetry group G, and 
where Il is a G - invariant measure. In a typical appli­
cation, the selection rule V rPs = 0, for all indices, indi­
cates that a transition from the initial state cP to the 
final state 1/!, under the perturbation V, is forbidden. 

Group theoretically, if the quantities zfir, V P' CPs for 
all (r,p, s), transform according to the representations 
D I , D2, D3, respectively, of G, then Vrps=O for all (r, 
p, s), if the Kronecker product D *0D20D3 fails to con­
tain the totally symmetric representation of G. Exam­
ples of the use of this criterion may be found in the 
standard works on the application of group theory to 
physics, for example see Refs. 1-5. However, it is a 
deep result of Wignerl that a quantum mechanical sys­
tem may exhibit antiunitary symmetries in addition to 
its unitary symmetry group; so it is of interest to con­
sider their effect on the existing selection rules. In the 
vast majority of cases the selection rule criterion given 
above is unaltered, except that, as Wignerl shows, the 
symmetries are realized by the use of corepresent.ations 
rather than representations. But not all vanishings of 
matrix elements are covered by the above rule; indeed 
it is well known, for example, see Hamermesh, 2 that 
further selection rules exist in the case of unitary sym­
metry when the functions zfi: and <Ps belong to the same 
carrier space. Also, Lax6 has demonstrated that there 
exist additional selection rules for matrix elements in 
which the functions 1/!r and <Ps are connected by time-re­
versal. In both of these special situations the analysis 
depends on the reduction of symmetrized and antisym­
metrized squares of representations, see for example 
Sec. 2 of Bradley and Davies7 for a simplified account 
of the second of these situations. It should be noted that 
in the second case it is unnecessary to employ core­
presentations; this is so because the restriction to the 
unitary subgroup of the corepresentation, under which 
the matrix elements transform, contains more than the 
unitary representation on which the analysis of Lax, or 
Bradley and Davies, is based. 

The antiunitary operators which spring immediately 
to mind are the time-reversal operators; more general­
ly, and especially in the context of magnetic crystals, 
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an antiunitary operator may appear as the product of a 
time-reversal operator together with a unitary operator. 
It is with magnetic crystals in mind that we have written 
this paper on the extra selection rules caused by the 
recognition of antiunitary symmetry in systems. More 
specifically we consider those matrix elements of the 
form (1. 1) in which the functions zfir' CPs' are related by 
an antiunitary operator, and where corepresentation 
theory does not yield a vanishing. 

Recently, Aviran and Zak, B in an account of the 
Wigner-Eckart theorem for corepresentations, find 
sets of relationships between matrix elements caused 
by the presence of the antiunitary operators. The re­
lationships are in general quite complicated, and their 
full implications may not be apparent. Indeed A viran and 
ZakB did not set out to investigate these relations, ex­
cept in special cases. Perhaps the aim of our paper, 
put in a slightly different way from that expressed above, 
is that of unravelling some of these relationships, in 
the cases when we might expect to be lead to vanishings. 
In this sense our work follows naturally on from that of 
Aviran and Zak. B However, because the restrictions we 
impose on certain quantities are not reflected in a de­
finite assignment of corepresentation types, we do not 
work directly from Ref. 8. In support of this we note 
that the position operator and the momentum operator 
transform in the same way under rotation, yet different­
ly under time-reversal. 

The presentation of the paper is as follows. In Sec. 2 
we define the matrix elements with which we are con­
cerned, and by the imposition of reasonable conditions 
on the integrands we derive relationships between these 
matrix elements. Then in a manner analogous to the 
analysis of Eq. (2. 14) of Bradley and Davies, 7 we find 
sufficient conditions for the occurrence of extra selec­
tion rules. These new Criteria, embodied in Theorem 
2.1, are translated into character tests in Sec. 3; as a 
special case Theorem 3.2 gives a direct generalization 
of the analysiS of (2. 14) of Ref. 7. It may be of some 
interest to note that even when the restrictive conditions 
of Theorem 2.1 fail to hold, the conclusions of Lemma 
2.1 and its corollary force some, but not necessarily 
all, the matrix elements to vanish. The remainder of 
the paper is devoted to testing the conditions of Theorem 
2.1 against the representations of crystallographic point 
groups and space groups. In the latter case the analysis 
is facilitated by the use of induced representations which 
enable the conditions of Theorem 2. 1 to be rewritten in 
terms of little groups and their allowable representa­
tions. 

The group representation theory involved in this paper 
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is elementary and may be found in the texts, 1-5 and the 
recent book of Bradley and Cracknell. 9 The literature 
in the field of magnetic symmetry is now so vast that it 
is difficult to do justice to it. Notable contributions have 
been made by Wigner, 1 Tavger and Zaitzev,1O 
Opechowski and Guccione, 11 Dimmock and Wheeler, 12 
Birss,13 Bhagavantam, 14 and Bradley and Davies. 15 Also 
the extensive bibliography of Ref. 9 should be consulted 
for references to the numerous contributions from the 
Russian school and to the more recent papers of 
Cracknell and associates. 

2. GENERAL EXTRA SELECTION RULES 

Let M be a magnetic group having a unitary subgroup 
G and antiunitary coset generated by the anti unitary 
operator A. Then M may be written as 

M=G+AG. (2.1) 

In general A is of the form Re, where e is a time-re­
versal operator commuting with all geometric operations 
and satisfying e2 = wI, with w = ± 1 and R is a unitary 
operator (henceforth no distinction is made between 
group elements and their corresponding operators). Ex­
cept in the case R = the identity, R does not belong to G. 
The corepresentation theory of M, with respect to the 
unitary subgroup G, is sufficient to deal with the ma­
jority of selection rules in the underlying quantum 
mechanical system. However, it is the exceptional 
cases which are of interest here and they are to be found 
among matriX elements of the form 

VrPs = J (Acf>r)* Vpcf>sdJJ., (2.2) 

(2.3) 

wherethefactorScf>r' r=1,2, ... ,d; Vp, p=I,2, ..• , d', 
transform according to the unitary representations D, 
D ' , respectively, of G. It is shown in the text following 
(2.4) that R normalizes G, so it makes sense to define 
a new representation DR of G by DR(g) =D(R-1g R) for all 
g E G. Since it can be shown that the functions (A cf>r)* 
transform according to DR' then Vrps=O, for all (r,p, s), 
unless DR ®D ®D I contains the trivial representation of 
G. Although this approach is better than one based on 
corepresentations of M, it can be shown that there are 
cases in which a further sharpening is possible. 

First, it is convenient to introduce the unitary group 

G/=G+RG. (2.4) 

Since G is a normal subgroup of M and e commutes with 
each element of G, it follows that R normalizes G. Also 
because A 2 E G it follows that R2 or - R2 E G. In the latter 
case G is a double group and contains R2 for it neces­
sarily contains - I. It has been shown that (2. 4) does in­
deed define a unitary group. 

Since R2 E G the unitary matriX D(R2) exists and may 
be diagonalized. With respect to a suitable baSis 

D(R2
)Jk= Bjk exp(ie j ), 

for all j, k. 

(2.5) 

As it is necessary to consider the operators RVpR-t, 
for all p, in Lemma 2. 1 below, it is convenient to as­
sume that D I extends to a unitary representation of G'. 
Indeed D' could have been taken as a unitary represen-
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tation of G' in the first place. Moreover, for definite­
ness, assume that D, D', are irreducible representa­
tions of their respective groups, and that 

(2.6) 

for all j, k. Since D and D' are defined on completely 
independent spaces the conditions (2. 5) and (2.6) can 
always be made and in no way interfere with one another. 

Now introduce a restriction on the operators Vp by 
requiring, 

(2.7) 

for all p, where (3 = ± 1 is independent of p. An argument 
supporting this assumption is given in the AppendiX. 

By analogy with (2.16) of Ref. 7, and based on the 
antiinvariance of the scalar product with respect to A, 
the following relations hold between the matriX elements 
(2.3). 

Lemma 2. 1: Under the hypotheses expressed by (2.4) 
to (2.7), 

Vrps = w{3 exp[i( er + O!p)l Vspr, 

for all (r,p, s). 

Proof: By definition (2.3), 

Vrps = (Acf>r' Vpcf>s), 

= (A Vpcf>s' A2 cf>r) , 

using the antiunitarity of A, 

== w(A V pA -lAcf>s' R2cf>r)' 

since ~=wI, 

(2.8) 

(2.9) 

(2. 10) 

(2.11) 

==wexp(ier) [Acf>s' (AVpA-l)+cf>rl, (2.12) 

since D(R2) is diagonal, 

= w{3 exp(ier) [Acf>s' (RV pR-l) cf>rl, (2.13) 

using (2. 7), 

= w{3 exp[i( er + O!p) 1 VsPr' (2. 14) 

since D' (R) is diagonal. 

Corollary: Vrps = 0 unless exp[i( er + es + 20!p) 1 = 1. 

Proof: A double application of Lemma 2. 1 gives 

Vrps = exp[i( er + es + 20!p) 1 Vrps ' (2. 15) 

for all (r,p, s). The conclusion follows at once. 

It should be noted that the relations obtained in Lem­
ma 2.1 and in the corollary are not basis independent. 
This is not to be regarded as a disadvantage, because 
it is always possible to transform to any other basis 
set as required. 

In analogy with the text following (2. 16) of Ref. 7 we 
look for subspaces of n, the carrier space of DR®D®D', 
which bear some relationship to the equations (2.8). Let 
Frps=(Acf>r)*Vpcf>s, for all (r,p, s), and define 

(2.16) 

for all (r,p, s). These two sets of functions span the 
linear spaces n', respectively. Although n = no + n- the 
sum is not necessarily a direct sum because the inter­
section of the subspaces n' may be larger than the zero 
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space. Consider now the action of g E G on the space ~r 

g: F'rps -.6 DR(g)r' r D , (g)p. pD(g)s' sFr·p' s· 
r' ,p' ,so 

+w{3 exp(i(lir + O!p)] .6 DR(g)"sD'(g)p'pD(g)r'rFs'p'r" 
T' ,p' ,s' 

If the assumption is made that 

DR(g)r'rD'(g)p'pD(g)s's=exp(i(lir- 8r• + O!p- O!p.)] 

XD R(g)S' sD' (g)p. pD(g)r' r' 

(2.17) 

(2.18) 

for all (r,p,s), (r',p',s'), and for allgEG, then~ris 
stable under the action of G. Equivalently, ~r is stable 
if 

Dwl(g)r'r D ' (g)p. pD(g)s' s =D(g)r' rD R' (g)p. pD R(g)s, 5' (2. 19) 

for all (r, p, s), (r', P', s'), and g E G. A more convenient 
form of (2. 19) is obtained in the following theorem. 

Theorem 2.1: Under the hypotheses embodied in 
(2.4)-(2. 7), the following conditions are sufficient to 
ensure the stability of ~r and are equivalent to equations 
(2.19): 

2. DR=X2D, 

3. DR-I=X3D, 

(2.20) 

(2.21) 

(2.22) 

where Xl' X2' X3' are linear characters of G and satisfy 
X3 =XI X2' 

Proof: It is straightforward to check that (2. 19) holds, 
and hence that ~r is stable, whenever conditions 1,2,3, 
obtain. 

Suppose now that (2.19) holds for all sets of indices 
and for all gE G. For each gEG both D(g) and D' (g) are 
nonzero matrices, so there exist pairs (s', s) and (p' ,p) 
such that D' (g)/I p and D(g).. s are nonzero. It follows that 

D wI(g)r' r = D(g)r' r x [a number independent of (r' , r)], 

(2.23) 

and hence that 

(2.24) 

for all gE G, where X3 is a linear character of G. Simi­
larly 

D R(g) = X2(g) D(g), 

D R'(g) = XI(g)D' (g), 

(2.25) 

(2.26) 

for all g E G, where Xl and X2 are linear characters of 
G. Finally the relation between the linear characters 
follows from (2. 19). 

Now when 0+ is stable under the action of G a sub­
representation of DR0D0D' is defined. If this subrep­
resentation fails to contain the trivial representation of 
G, then all members of 0+ have zero integral. In that 
case not only is (2.8) true but its negative also, and in 
consequence Vrps=O for all (r,p, s). Such a vanishing is 
an extra selection rule. 
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3. CHARACTER TESTS AND SPECIAL CASES 

Group characters are far more accessible quantities 
than their associated representations, so it is natural to 
ask if Theorem 2. 1 can be restated in terms of charac­
ters. That this is possible is due to the following result, 
whose proof is elementary. 

Lemma 3.1: The unitary matrix T of dimension d is 
a scalar multiple of the identity if, and only if, Trace T 
=dz, where z is a complex number of unit modulus. Now 
Lemma 3.1 and Theorem 2.1 together give Theorem 3.1. 

Theorem 3.1: If X and X' are the characters of D and 
D', respectively, the following conditions ensure the 
stability of 0+ under G: 

1. x'(R-IgRg-I)=d' XI(g), 

2. X(W IgRg-I)=dX2(g), 

3. X(RgWIg- I)=dX3(g), 

(3. 1) 

(3.2) 

(3.3) 

for all gE G, where Xl' X2' X3' are linear characters of 
G, and X3=XIX2' 

It should be noted that the equation X(R- I gR) 
= X2(g) X(g), for all g E G, is not equivalent to (3. 2), for 
the three-dimensional irreducible representation of the 
tetrahedral group T and R a mirror-reflection provides 
a counterexample. 

Although Theorem 3.1 provides sufficient conditions 
for the stability of 0+ it does not give any hint as to the 
nature of the representation so defined. Indeed each ex­
ample should be treated separately. There is, however, 
a frequently occurring situation which deserves special 
attention, and for which it is possible to expljicitly per­
form the complete reduction of O. First note that (3.2) 
alone implies that DR0D0D' =X2(D0D0D'), which has 
two subrepresentations corresponding to the symme~ 
trized and anti symmetrized parts of D0D. In fact these 
subrepresentations have carrier spaces spanned by the 
functions F rps ±Fspr , but unfortunately they do not in 
general coincide with 0'. There is coincidence, however, 
if the angles 8r , O!p, are independent of their indices 
and satisfy exp[i(lir + O!p)]=Y, where y2=1. Now restrict 
attention to this case, so that 0+ is the carrier space of 
X2[D0D]0D' or X2{D0D}0D' according as z=yw{3 is ± 1. 
Then the following is true. 

Theorem 3.2: Suppose the following hold: 

1. X(R2)=dexp(ili), 

2. X'(R)=d' exp(iO!), 

3. X(WI gRg-I)=dX2(g), 

(3.4) 

(3.5) 

(3.6) 

for all g E G, where y = exp[i (Ii + O!)] satisfies y = 1 and 
X2 is a linear character of G. Then Vrps=O for all 
(r,p,s) if 

or 

(a) yw{3= 1 and X2[D0D]0D' does not contain the 
trivial representation of G, 

(b) yw{3 = - 1 and X2{D0D}0D' does not contain the 
trivial representation of G. 

Proof: The three conditions (3.4), (3.5), and (3.6), 
ensure that conditions (3. 1), (3.2), and (3.3), of Theo-
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rem 3.1 hold, and hence that n+ is stable under the 
action of G. Also the value of yw{3 determines which sub­
representation of D R 0D0D' corresponds to n+, and 
hence how the vanishings of Vr/>s are distributed. 

Note that y2 = 1 is a case not covered by the corollary 
to Lemma 2. 1. 

Focus is now directed towards the class of magnetic 
point groups, and the problem of checking in each case 
the application of Theorems 3.1 and 3.2. 

4. MAGNETIC POINT GROUPS 

Magnetic groups and their applications are well de­
scribed in the literature; in particular the reader is re­
ferred to the review article of Bradley and Davies15 

which contains an extensive bibliography in addition to an 
account of the corepresentation theory of magnetic 
groups. An even more comprehensive source is the re­
cent book of Bradley and Cracknell. 9 Also, Hamermesh2 

contains a derivation and a listing of all magnetic point 
groups as well as character tables of point groups and 
double point groups. The Schoenflies notation is used in 
the sequel. 

There are 90 crystallographic magnetic point groups 
distributed into two classes: first, the class of grey 
groups consists of the 32 crystallographic point groups 
each adjoined by the time-reversal operator 9; secondly, 
the class of black and white groups consists of the 58 
groups of the form M = G + A G, where the antiunitary 
element A = R 9 and R does not belong to the unitary 
group G. In the latter class both G and G' = G + R G are 
crystallographic point groups; indeed the black and white 
groups can be enumerated by listing for each point group 
G' its subgroups G of index 2. 

The extra selection rule theory appropriate to the grey 
groups is that given in Ref. 7; indeed there are many 
possible extra selection rules, for in almost every case 
the symmetrized and antisymmetrized squares of an ir­
reducible point group representation have no representa­
tions in common. 

On looking for possible extra selection rules among 
the black and white groups a large number of these 
groups can be dismissed. If G has an Abelian double 
group-for it is necessary to consider double-valued 
representations-then (3.2) and (3.3) hold automatically 
and (3.1), linked with (3.2) and (3.3) through the linear 
characters Xl' X2' Xa, only holds if D' is one-dimensional. 
In such a simple case there can be no extra selection 
rules because D R0D 0D' is one-dimensional. For the 
remaining 26 pairs of groups it is always possible to 
choose R of order 2, and in these cases the conditions 
of Theorem 3.1 are equivalent to the following: 

(A) X' (R) = d I exp(iO!), 

(B) X(WlgRg-1)=d X2 (g), 

for all g E G, where X2 is a linear character of G. 

PrOOf: For if R2=E and (A), (B), hold, then dX2(g) 
= X(R2WlgRg-l) =X(RgRg-I)=X(g-1 RgR) 
==X(g-l RgRW2) =X(g-l RgR-I ) == X(R gWI g-l), which 
means that (3. 1) and (3.2) hold with X2 ==Xa' Also since 
D'(R) is scalar diagonal, X/(R-IgRg-I)=d ' , so that 
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(3.1) holds with Xl = unity. Conversely if R2 ==E and the 
conditions of Theorem 3.1 hold, then certainly (B) holds. 
Also since D(R2

) is the identity, (3.2) and (3.2) imply 
that X2=X3' and hence that Xl is unity. But then (3.1) 
means that D' (R) commutes with the irreducible rep­
resentation D I, and that D I (R) is scalar diagonal, as in 
(A). Of the 26 pairs of groups (0' ,G) there are 13 for 
which the choice R = the space inversion is possible. 
Clearly for such groups both (A) and (B) hold trivially 
for all X' ,x, with exp(iO!) = ± 1 and X2 the trivial charac­
ter. These cases therefore come within the scope of 
Theorem 3.2 in which y = exp(iO!). Earlier remarks 
about the possible profusion of extra selection rules 
among the grey groups are also valid here, that is in 
the case of the following pairs: (D2h, D2), (D2h, c2v)' (D4h, 
q)' (D4h, c4), (D4h, D2d), (D3d, c3U), (D3d , D3), (DSh' D3h), 
(DSh' Ds), (DSh'csv)' (Th,T), (Ok' 0), (Oh' T d)· 

Of the remaining 13 pairs of groups there are 8 for 
which only one-dimensional solutions of (A) and (B) can 
be found-these are dismissed in the context of extra 
selection rules. The 5 remaining pairs are: (D3h, c3v)' 

(D3h, D3), both with R = a h; (Ds' D3 ), (c6v ' c3.), (DSh' Dad)' 
each with R = c2•• For these pairs (A) is only satisfied 
by the single-valued representations of G' with exp(iO!) 
= ± 1, while (B) holds trivially because for all these 
cases R commutes with each element of G. Again Theo­
rem 3.2 is appropriate. 

Before leaving magnetic point groups it is of interest 
to note the following potentially advantageous point. The 
conclUSions of Theorem 3.1 are not independent of the 
choices of the element R in the coset RG, so if an initial 
choice of R fails to lead to nontrivial results then there 
is freedom to replace it by Rg for any g E G. Since the 
matrix elements (2.2) based on R are linear combina­
tions of the corresponding matrix elements based on Rg, 
there is no loss of selection rules. Indeed there may be 
some gain through the greater freedom now allowed in 
the hypotheses of Theorem 3.1. Unfortunately this extra 
freedom does not in fact result in any new extra selec­
tion rules associated with magnetic point groups. 

5. MAGNETIC SPACE GROUPS 

The problem of testing the hypotheses of Theorem 
3. 1 becomes more difficult when M is taken to be a 
magnetic crystallographic space group. Then G and 0' 
are ordinary crystallographic space gr.oups. The diffi­
culties arise because space groups, being of infinite 
order, have representations which, although well known, 
are awkward to manipulate directly. There is a simplifi­
cation however because, as is shown by Bradley and 
Cracknell,9 an irreducible representation of a space 
group is obtained as an induced allowable representation 
of an appropriate little group. Since these allowable rep­
resentations are much easier to handle than full group 
representations it is fortunate that the hypotheses of 
Theorem 3.1 can be translated into little group terms. 
This assertion is based on the following result. 

Lemma 5.1: Let the representation D of the group G 
be induced from the representation I' of the subgroup L. 
Let 
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be a coset decomposition of G with respect to L, where 
(J ranges over the finite factor space GIL. If hE G then 
D(h) is a scalar multiple of the identity if and only if 

1. hEn La' where La=PaLPa-\ 
a 

2. r(Pa-
l hPa) is the same scalar matrix for all (J. 

Proo/: Reference should be made to the definition of 
the induced representation r + G as given by Bradley. 16 

A similar result is true if the representation 0' of G' 
is induced from the representation r' of L', and 

G' =6r Ii , , 
is a suitable coset decomposition. Then Theorems 3.1, 
3.2, can be restated as follows. 

Theorem 5. 1: Under the hypotheses of Lemma 5. 1 and 
the subsequent text, and if X, X', are the characters of 
r, r', respectively, then the following conditions en­
sure the stability of n+: 

(A. 1) R-lgRg-lEn L'" where L' ,=r,L'r,-l, , 
(A.2)KlgRg-landRgKlg-lEnLa' where 

a 

La=paLpa-
l ; 

(B.1) x'(r,-l Kl gRg-lr)=I'Xl(g), 

(B. 2) X(Pa-
l Kl g R g -lpa) = IX2(g), 

(B. 3) X(Pa-
l Rg Kl g-l Pal = IX3(g), 

for all gEG, for all r" Pa, and where Xl' X2' X3' are 
linear characters of G satisfying X3 = Xl X2' and /,1', are 
the dimensions of r, r', respectively. 

Theorem 5.2: Under the hypotheses of Theorem 5.1 
and using the same notation, suppose 

(A. 1)' REnL;, , 
(A. 2)' R2 and Kl g R g-l E n La; 

a 

(B. 1)' x'(r,-lRr)=I' exp(ia), 

(B. 2)' X(Pa-
l R2Pa) = I exp(i(J) , 

(B. 3)' X (Pa-l Kl g Rg-l Pal = IX2(g), 

for all g E G, where y = exp[ i( e + a)] satisfies y2 = 1, and 
X2 is a linear character of G. Then Vrps = 0 for all 
(r,p,s) if 

or 

(a) yw{3= 1 and X2[D0D]0D' does not contain the 
trivial representation of G, 

(b) yw{3 = - 1 and X2{D0D}0D' does not contain the 
trivial representation of G. 

Further analysis depends on an identification of the 
groups L, Ii, as little groups. Since G is a space group 
its little groups G(k) can be labeled by Brillouin zone 
vectors k (see for example Bradley16 or Koster1 7); indeed 
G( k) consists of those elements {S I v(S) + t} E G which 
have the property Sk "'k modulo the reciprocal lattice of 
G. But if G(k) is the group of k, then Ga(t) is the group 
of Pak. It follows that n Ga(t) is the intersection of the 
groups of the prongs o~ the star of k. Here the star of k 
means the set of all vectors obtainable from k by the 
action of G. For example if k '" 0 then G(t) = G, and the 

J. Math. Phys., Vol. 15, No.1,January 1974 

123 

intersection group is G itself. At the other extreme if 
k is a general vector then G(t) is the translation sub­
group T of G and coincides with the intersection sub­
group. As a practical aid it is worth noting that each 
factor group G/IT is a point group, and that 

(nGa(k»/T=n (Ga(k)/T), (5.1) 
a a 

so it is possible to compute n Ga(k) at the point group 
level by examining the symmaetrical unit cell of G. Thus 
the (A)-conditions of Theorems 5.1 and 5.2 are straight­
forward to check. Also since the allowable representa­
tions of the little groups of a space group are always 
diagonal for the translational elements the (B)-conditions 
are essentially only conditions on point group represen­
tations and k vectors. For cases which satisfy the (A)­
conditions, the (B)-conditions are straightforward, 
though tedious to check. As a final theoretical point the 
symmetrized and antisymmetrized representations 
which appear in Theorem 5. 2 may be computed by a 
method due to Mackey, 18 which is explained and ampli­
fied in the context of space groups by Bradley and 
Davies. 7 

For a simple example consider the groups G = T2 d and 
G' = Os., where R is the space inversion. Let g = {p I t} 
be the general element of G, then R-l g R g -1 is {E I - 2t}, 
where E is the point group identity. It follows that (A. 1) 
and (A. 2) are automatically satisfied. Since the space 
inversion is self-inverse the (B)-conditions of Theorem 
5. 1 can only be satisfied if Xl(g) = 1 for all g E G. 

Now if r, r', are associated with the vectors k, k', 
respectively, it is easy to show that 

(5.2) 

and 

(5.3) 

for all g E G. It follows that the (B)-conditions can be 
satisfied whenever the prongs of the star of k differ from 
k by no more than a half reciprocal lattice vector, and 
similarly for k'. This restricts attention to those vec­
tors k, k', which are associated with the points r, X, L, 
of the Brillouin zone (see for example Fig. 4 of 
Bouckaert, Smoluchowski, and Wigner19). Under these 
circumstances Theorem 5.2 is applicable with exp(ia) 
=± 1, exp(i(J)= 1, and X2 the trivial character of G. In 
fact now D' is an irreducible representation of G. Now 
reference to the tables in the appendix of Bradley and 
Davies7 yields a wealth of extra selection rules. 

For consider a transition between an initial state L2 
and (Ie)L 2 which is effected by the electric dipole oper­
ator which transforms like a polar vector according to 
the representation rs of T/(=G). Now {3=1, y=-l, 
and w=l, so z={3yw=-1. Also 

[(L 2 t G)0(L2 tG)]= r l t G+ rs tG+Xl t G+X
4 

t G, 

{(L 2 t G)0(L2 t G)}=Xs t G, 
s 

(Xs t G)0(rs t G) = 6 (Xi t G). 
i=l 

Now (3yw = - 1, X2 is the trivial character of G, and 
X2(XS t G)0(rs t G) does not contain the trivial represen­
tation of G, Theorem 5. 2 implies that V rps = 0 for all 
(r, p, s). Since rs t G is contained in (L

2 
t G)0(L2 t G), the 
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above result is a true extra selection rule. Corepresen­
tation theory does not give this result because the co­
representation associated with r 5 + G is contained in the 
square of the corepresentation of L2 + G. 

APPENDIX 

The following analysis is due to Dr. R. Shaw of the 
University of Hull (private communication). 

The crucial assumption made in Sec. 2 was that the 
operators Vp satisfy (8Vp8-1Y=J3Vp, where J3=±l inde­
pendently of p. Since this point is central to the argu­
ment it certainly deserves some explanation. In fact it 
is not an unreasonable assumption to make and is sup­
ported by the following group theoretical argument. 

Let the operators Vp, p= 1, 2, ... , d', which form a 
basis set for the vector space V, transform according 
to the irreducible representation D' of G'. If V is the 
vector space geEerated by the operators VI> = (8 VI> 8-1)+, 
for all p, then V also carries the representation D'. For 
if O(g) is the unitary operator corresponding to the ele­
ment g E G', the action of g on VI> is given by 

O(g) VI> O(gfl = [O(g) 8 VI> 0-1 O(gtl]+, (A1) 

using the unitarity of O(g) 

= [8 o (g) VI> o (g)-I 0-1 ]+, (A2) 

since 0 commutes with all geometric operators, 

=~ rOD'(gL V 0-1 ]+, . ~ . (A3) 

letting g act on VI>' 

=~D'(g).1> V.' • 
(A4) 

as required. It follows that the intersection of V and V 
is an invariant subspace of D', and since D' is irreduc­
ible that either V n V = {O} or V = V. In the latter case 
there exists a nonsingular matrix c=(cpq), where 

Vp=~ c qp V.' (A5) 
• 

for all p. But the operators VI> transform under G' ac-
cording to the representation D', from which it follows 
that C commutes with D' (g) for all g E G'. This is only 
possible if C is a scalar multiple of the identity, so (A 5) 
can be rewritten as VI> = 13 VI>' for all p, for some com­
plex number 13. In fact 132 = 1, for on the one hand 
(0 VI> 0-1)+ = J3( 0 Vp 0-1)+ = 132 VI>' and on the other hand 
(0 VI> 0-1 )+ = VI>' 

J. Math. Phys., Vol. 15, No.1, January 1974 

124 

Group theoretically the other possibility V n V = {O} 
cannot be excluded. However it is an empirical fact that 
many physically relevant operators do conform to (2. 7). 
For example, the position and momentum observables, 
the electric and magnetic dipole operators, all fall with­
in its scope. What the above analysis shows is that it is 
sufficient !9 find one nonzero vector operator in the 
space V n V for (2.7) to hold. 
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Series developments for distributions of the type R a exp( - K2/ R) (with R = r 2 - t 2) are discussed 
in the light of the Gel'fand-Shilov method for the definition of causal distributions. It is shown that 
there is no arbitrariness in the series. In Sec. I the concept of causal distribution is reviewed, in Sec. 
II the series developments are given, fixing the values of the constants in the On 6 terms. In Sec. III 
the Fourier transforms are computed. In Sec. IV we obtain the series development for the Fourier 
transform of exp( - K2 /R)3" 3v(R -1 ). 

INTRODUCTION 

Recently, the exponential superpropagator has come 
to the attention of physicists working with nonpolynomial 
Lagrangians in the form eKq,. 1 The corresponding super­
propagator has been discussed by Volkov2 and in a dif­
ferent context by Lehmann and Pohlmeyer. 3 

We want to discuss this subject in the light of the 
Gel'fand-Shilov4 method for the definition of causal dis­
tribution. Our method should be compared with that of 
Blomer and Constantinescu5 where they use explicit reg­
ularization to construct the exponential superpropagator. 

I. CAUSAL DISTRIBUTIONS 

Let us first recall what is the meaning of "causal" 
distribution. We start from a well-defined distribution 
j which is a function of a positive definite quadratic 
form (see also Ref. 6), i. e. , 

(1) 

We now make a positive dilatation in the variable t (or, 
equivalently, we change the metric to 1,1,1, a2) ob­
taining 

{f(r + a2 f), cp(xyzt)) = Ij!(cp, a). (2) 

Ij! is now an analytic function of the parameter a, and the 
analytic continuation to a = ± i + E (i. e., a2 = - 1 + 2iE) de­
fines, respectively, the causal and anticausal distri­
butionsj(r - f ±iE). 4 

It is easy to see, following this procedure, that the 
Fourier transform can be calculated as the Hankel 
transform of the Euclidean f(r + f) (see Ref. 7). We 
shall use this method to discuss the distribution 

exp( - K2 1 R ± iO) where R = r - f = x2 + y2 + Z2 - f. 

(3) 

According to the definition previously given, this dis­
tribution should be understood as 

Ij!= (exp( - ~/R ± iO»= lim(exp[ - K2/(r + a2 f)], cp(xyzt» 
a"'±i 

= li~(exp[ - K2 I( r + t2)] cp[xyz(tl a)]) 
a .. :tJ 

or, changing to polar variables in Euclidean four 
dimensions, 

Ij!= lim a-I J p3 dp exp( - K2 1 p2) J dO cp[xyz(tl a) 1 
a-.I 
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(4) 

where 

cp(p, a) = J dO cp(xyz(tl a». 

This formula shows us explicitly that any causal dis­
tribution can be obtained from the corresponding 
Euclidean distribution by a suitable analytic continuation 
in the metric. As a consequence, it must be noted from 
(4) that the exponential superpropagator is well defined. 
Naively, one could think that exp(- K21R ±iO) has prob­
lems at the cone R = 0 when approaching this limit from 
R < 0, but it is clear from (4) that these negative values 
do not appear in the domain of integration. In particular, 
one can see that exp(-K2IR±iO) and all its derivatives 
are zero at the origin. As a matter of fact, in the 
Euclidean region, the exponential superpropagator is a 
smooth well-behaved function. 

In the same way, one can see that (R ± iO)'" exp( - ~ 1 
R ± iO) is also a well-defined distribution for any value 
of Q, real or complex. 

II. SERIES DEVELOPMENT 

From now on we shall work with R + iO which we will 
simply call R. For (R - iO), the complex conjugate must 
be taken. 

We want now to find the series development of the 
exponential superpropagator. The naive development is 

However, Gel'fand-Shilov4 have proved that R- n is not 
well-defined for n ~ 2. In these cases one defines a 
finite part 

d 
PfW n = aa(Q +n)R" I ",=-n' (5) 

but it remains an intrinsic indeterminacy proportional to 
the iterated d' Alembertian of the 1) function. In other 
words, 

R-n-2~ P
f

R-n-2 + cnO"Ii, 

where the first term of the rhs is well defined and the 
second term contains an arbitrary constant. So, we 
must expect that the series for the superpropagator will 
also contain a series in the iterated d' Alembertians with 
coefficients which we want to determine. In order to do 
that we take advantage of the given definition and con­
sider the Euclidean development 
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where 

We now apply both members to the following family of 
trial functions: 

'1'( r) = r P exp( - f32 r ). 

The left-hand side of (6) givesB 

[exp( - ,,2/r ), rPexp( - f3r]= 1; drr exp( - ~/r) r P 

x exp( - f32r)! dn 

(6) 

= 2r(,,/f3)P+2 K p+2(2"f3). (7) 

The first series in the right-hand side of (6) gives 

21T2 ~ (-n ~)n P f fo" dr r O+3+2P exp( - /32y2! o=-n 

_2~t(_,,2)n P r(P+Q!+2)_2 2~(_,,2)n r(p+2-n) 
- 0 n! '2(f32)P+ 0+2 - 1T ~ n! 2(/32)P+2-n 

The last series of (6) gives 

t en! ~x,6,norPexp(-/3r)=6 cn,6,n[rPexp(-/32y2)I =0 
~O n r 

(9) 

where ljJ(n) is the Euler function and use has been made 
of 

lim (Q!+n) r(p+2+Q!)=(-1)n-p/r(n-p-1), (10) 
a ..... n 

lim (Q! + n) r(p + 2 + Q!) = (- l)n-PljJ(n - p - l)/r(n - p - 1). 
a ..... n 

(11) 

Comparing (8) and (9) with the series development of (7), 
namely, 

2r(~)P+2K (2(.1 )=2r(~(-1)n(p-n+1)!(,,2)n 
f3 P+2 fJ" ~ 2. n! (/32)P+2-n 

+ (_ w t (~)p+2+n (f32)n [_ In(/3,,)2 
o n!(p+ 2 +n)! 

+ ljJ(n+ 1) + ljJ(p+n+ 3)]), 

we get 

e _ 1T2( - ~)n+2[ljJ(n + 3) - In ,,2] 
n- 4nnl(n+ l)!(n+ 2)! 

We finally obtain 

exp(_~/r)=:t(-~)n pJ..rtn 

o n! 
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+ r :t (- ~)n+2[ljJ(n+ 3) -ln~] 
o 4nn!(n+1)!(n+2)! 

which when written in the hyperbolic metric has the 
form (see note added in proof) 

.. ( ~)n 
exp( - ~ /R) = 6 ---,-P,R-n - i1T2 

o n. 

.. (- ~)""2 [p(n + 3) - ln~] 
x~ 4n nl(n+1)!(n+2)! 0"0, 

where the i comes from the analytic continuation 

o(t) ~o(at) (l/i)o(t). 

(13) 

(14) 

We must point out that every term of Eq. (14) is per­
fectly well defined containing no arbitrariness whatso­
ever. 

One can easily obtain the development of R-s 

exp(- ,,2/R) by taking successive derivatives of (14) with 
respect to (,,2) or s successive integrations if s is nega­
tive. However, we shall deduce them as particular cases 
of a more general expression. 

We note first that 

eX =G~~(- X/O)=G~~ [- l/X 11], (15) 

where G is the Meijer G function (Ref. 9). For our case 

(16) 

where c runs from - ioo to +ioo leaving on the left the 
poles of r(s) and those of RS as R'" is analytic in Q! with 
poles for Q! = - 2, - 3, ... and residues 

( 17) 

It should be noted here that the usual definition of the 
Meijer G function9 does not consider the poles of XS. 
Nevertheless, for distribution, these poles must be 
taken into account to obtain the correct results. In this 
way the evaluation by residues of the integral (16) gives 
back (14) when use is made of (17). 

Now, multiplying (16) by R O
, we obtain 

(1(2)0 J (R)S+O 
R'" exp(- ~/R)= 21Ti c r(s) ,,2 ds 

(18) 

The evaluation by residues now gives 

'" _ .. (_ ~)n Q-n . .. {~)n+Q+2 
R exp(-~/R)-6--,-R -zr 6 4n '( 1)' 

o n. 0 n. n+ . 

r(-n- Q!-2)0"0. (19) 



                                                                                                                                    

127 C.G. Bollini and J.J. Giambiagi: On the exponential superpropagator 127 

This equation can be checked with a trial function simi­
lar to the one already used. 

It is easy to see that when a tends to an integer, the 
pole of each term of one of the series in the right-hand 
side of (19) is exactly compensated by another pole of 
the other series, leaving only the finite part of each 
term. In particular, for a - 0 we re-obtain (14). For 
a - s, s integer;, - 2, it gives 

s+1 ( K2)" .. ( K2)"+S+2 
Rsexp(-K2/R)=L;----RS-"+L; - P R-"-2 

on! 0 (n + s + 2)! f 

. .. (- K2)"+s+2[l/i(n + s + 3) - ln~] 0" 0 - tr ~ -'---.....!..:c::---='~---::7"~-:'--,-;::~=---
o 4"n!(n+l)!(n+s+2)! 

For a-s .;:-2 

+ t (- ~)" P Rs-n 
o n! f 

g:[ R S exp( - K
2/R)] 

(21) 

III. FOURIER TRANSFORMS 

The Fourier transform or' all the expressions just ob­
tained can be easily evaluated either by term-by-term 
transformation or by using the Hankel transform of 
Meijer's functions 1o 

g: [(K2)aG~~ (~I1+a)J = - i1T2(K2)a+2G~~ (K~pl_ a - 2, 0, -1). 

So 

] 
.. (- ~)" r(a- n+ 2) ( P1n-a-2 

g:[Raexp(-~/R) =-i1T2~ n!r(n-a) 4" 

. 2" (K2)"+a+2r(_n_a+2) ( P)" 
-t1T ~ n!(n+ I)! -4" ' 

(22) 

when a - s integer with s ;, - 2 

-(2 )4 t (- ~)n(_ o)S-" 0 _ ir(- ~)S+1 i. _ 'r i] (- K2)"+S+2(_P/4)"[l/i(n + 1) + l/i(n+ 2)+ l/i(n+ s + 3) -In(K2p/4)] (23) 
- 1T 0 n! (s+I)! P t 0 n!(n+l)!(n+s+2)! 

and for s.;:- 2 

g:[R S exp(- K2/R)] 

= _ ir f3 (K2)"+S-2 r(- s-n+ 2)(- P)" _ i1T2 t (- ~)"(- P/4)"-S-2[l/i(n+ 1) + l/i(n- s) + l/i(n- s-l) -In(K2p/4)] (24) 
o 4"n!(n+l)! 0 n!(n-s-2)!(n-s-l)! 

It should be noted here that the use of Volkov's formula 
given in Ref. 11 would give a wrong result when applied 
to this case as it reproduces the series in the rhs but it 
does not include the finite sum L-S- 3 which is essential to 
get the result given in (24). See also Ref. 12. 

IV. CALCULUS OF DERIVATIVES 

The above-mentioned treatment allows us to solve the 
problem raised by Salam, 1 namely the evaluation of the 
Fourier transform of 

(25) 

According to the given definition of causal distri­
butions this product is well defined for any R and, in 
particular, is zero at the origin. One can easily verify 
the following identity: 

exp(- ~/R)du dy(~/R)= 2(du dy - tgu)(R/~)exp(- ~/R). 

(26) 

Note that in particular the trace of both members of (26) 
is zero. It must be noted that, according to the definition 
o(xyzt)exp(- ~/R) is zero. 

The series development of the rhs can be written by 
means of Eq. (20) for s = 1. To get the Fourier trans­
form we use (23) and obtain 
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X(I- 2f; (K2p/4)"+I[1/J(n + 1) + l/i(n+ 2) + l/i(n+ 4) -In(K2P/4)]\ 
o n!(n+ 1)!(n+ 3)! 7' 

(27) 

One can see that (27) goes to zero for K2 - O. This is 
also true for (26) in spite of the apparent pole in ~ in 
the r. h. s. which is eliminated by the differential 
operator. 

V. CONCLUSIONS 

By using the definition of causal distributions given at 
the beginning of the paper one can see that exp( - ~ / R) 
is well defined and without problems at the origin. It has 
a uniquely determined series development without any 
arbitrary constants. 

Note that the series development (14) contains an infi­
nite series in 0" 0, contrary to what one would expect 
from the prinCiple of minimal singularity. 3 The same is 
valid for distributions of the form R a exp( - K2/R) (a, 
arbitrary). Further, no regularization is needed to write 
its series development (compare with Ref. 5). We also 
found the Fourier transforms of these distributions 
together with the corresponding series developmemt. If 
one is interested in the series development of exp[ ~ / 
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(r - f)] one can write it as exp[- ,c.j(f - r)] and con­
sider the Euclidean metric f + fir. One then repeats 
the same argument that led to (14) by making at the end 
a - - i. The result obtained in this way is equal to the 
one obtained by replacing K - iK. (For anticausal a - + i, 
K- - i.) 

Equations (13) and (14) are a particular example of a 
general result which follows from the definition of causal 
distributions, namely, that any equation between them is 
the analytic continuation of a corresponding equation in 
Euclidean metric so that any theorem relating causal 
distributions can be deduced from a similar theorem in 
Euclidean metric. Series in Dn /) like those appearing in 
Eq. (14) have been extensively studied by Efimov. 13 

Finally, we want to remark that the logarithmic de­
pendence of the coupling constant appears only when the 
number of dimensions is even. This follows from 
GeI'fand-Shilov's14 result for R- A which have poles for 
i\. = (dj2) + n, where d equals the number of dimensions. 
For this reason the naive development of the exponential 
is valid for d odd, and the Fourier transform can be 
evaluated term by term without any problem15 (compare 
with Ref. 5, p.191). 

Note: When this paper was finished we learned that 
G. Lazarides and A. A. Patani had obtained the same 
result [Eq. (14)] following a similar method. 
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KS-related f-g couples as exact vacuum solutions of 
Salam's two-tensor theory* 
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The exact solutions of the vacuum field equations of the two-tensor theory of gravitation proposed 
by Salam et af. are determined for the case that the two tensors differ only by the tensor product of 
a null vector field with itself. It is found that this null vector field must be geodesic with vanishing 
shear, expansion, and twist, and represents a field of multiple principal null directions for both Weyl 
tensors. As a consequence, the solutions can be derived from the results of a paper by Kundt. 

I. INTRODUCTION 

The field equations of the two-tensor theory of gravi­
tation proposed by Salam et al. 1 are in general rather 
complicated, even in vacuo, so that it is hard to find 
exact solutions; but they simplify when special relations 
between the two tensors fIJ.V' glJ.v are assumed. 

We will call a couple ''!lJ.v=glJ.v= any solution of 
Einstein's vacuum equations" a trivial solution, and are 
interested in obtaining nontrivial couples flJ.v' glJ.v of ex­
act solutions. Pirani2 has found that the assumption of 
a conformal relationshipflJ.v= 02gIJ.V leads to 0 2 =1 when 
inserted into Salam's vacuum equations. 

Here we want to consider a relationship of the form 

(1 ) 

where klJ. is a nonvanishing field of null vectors with re­
spect to glJ.v: 

klJ.klJ.=klJ.glJ.vkv=O. (2) 

[At this point there is no gain of generality by writing a 
nonconstant JC in (1); but we will, later on, impose 
further conditions on k IJ.' but do not want to restrict (1) 
by them, which is achieved by having JC explicitly at our 
disposal. ] 

A relationship of this kind between two symmetric 
tensors will be called a Kerr-Schild (KS) relationship: 
the class of metrics first considered by Kerr and Schild3 

is KS-related to the Minkowski metric, according to 
our terminology. 

When this ansatz is introduced into the vacuum equa­
tions of Ref. 1, one obtains Simply 

GIJ.V(g) = - (K!/K})APJCklJ.kv' GlJ.v(f) = MlJCklJ.kv' (3) 

where GlJ.v(g) and GlJ.v(f) are the Einstein tensors con­
structed from the "metrics" glJ.v andflJ.v' It is the pur­
pose of this note to derive the solutions of the system of 
equations (1), (2), (3). The result is that these solutions 
can almost be copied from a paper by Kundt,4 after one 
has proven that the null congruence determinedby klJ. 
must be free of shear, twist, and expanSion, and that 
the fields glJ.v' flJ.v have algebraically special (or degen­
erate) Weyl tensors with klJ. a multiple (Debever­
Penrose) principal null direction. 

This proof is given in Sec. 3, after some auxiliary 
considerations in Sec. 2. In Sec. 4 we present the final 
"canonical" form of the solutions. 

Finally, we mention that the same results hold in the 
two-tensor theory of massive gravitation which was ob-
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tained5 by "covariantization" of the theory of Freund 
et al. 6 

II. AUXILIARY CONSIDERATIONS 

The simplification that takes place when (1), (2) are 
inserted into Salam's equations comes from the fact that 
the "mixing terms" in these equations contain the differ­
enceflJ.v"-"glJ.v' and that we have the further relations be­
tween the inverses and determinants 

fIJ.V=glJ.V _ 2JCkIJ.kv 

detjlJ.v= detglJ.v· 

klJ. is null with respect to flJ.v also, and the index on k 

(4) 

(5) 

can be raised and lowered by jlJ.v, f IJ.V as well. Hence 
"K:S-related by a vector field klJ." is an equivalence rela­
tion, by which all metrics for which klJ. is null may be 
divided into equivalence classes ("KS classes"). Let us 
mention here some properties the proofs of which are 
simple and will not be carried out explicitly-some of 
them emerging in later calculations. First, if klJ. is 
geodesic for glJ.v' it is geodesic for the whole KS-class 
containing glJ.v' Second, if klJ. is geodesic for a class, its 
optical scalars7 depend only on the class. Third, if glJ.v 
has an algebraically special Weyl tensor with klJ. as a 
multiple Debever-Penrose direction and a Ricci tensor 
proportional to k"kv' then all metrics KS-related to it 
by klJ. with a Ricci tensor of this kindS must have special 
Weyl tensor also (the type will, however, vary over the 
class I). 

It is convenient for our purposes to extend the null 
tetrad formalism to the situation conSidered here, main­
taining all basic conventions of a paper by Debney, Kerr, 
and Schild. 9 Then the optical scalars of k,. will appear as 
certain rotation coefficients of the tetrad fields. Let 
{e1

, e2, e3 = klJ.dxlJ. ,e4
} be any null cotetrad for g, so thaeo 

glJ.~xlJ.dxv= 2 (e1e2 + e3e 4
) =gabea ® eb• (6) 

W~th this we associate the following null cotetrad (ha) 
for f: 

hl:=e1
, h2:=e2, h3 :=e3

, h4 :=e4 +JCe3
, 

so that (1) becomes 

flJ.~xlJ.dxv= 2 (h 1h2 + h3h4
) = fabha ®hb. 

(7) 

The dual tetrads are the two quadruples of differential 
operators {eu e2, e3 , e4 = klJ. a IJ.} and 

The anholonomy coefficients of these tetrads, defined 
by the LIE brackets 
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(or, equivalently, by d /\ ee= - tC;bea /\ eb, d /\ he= 
- t.v:bh"/\ hb

), can be related to each other using (7/ ); 
here and in what follows we make the convention that 
latin indices on quantities derived from g or f refer 

(8) 

them to the tetrad {eJ or {h,.}, respectively, and are 
raised and lowered by gab = g"1> = fab = fab. The Riemannian 
connection defined by g{f) is given by the matrix rab(~ab) 
of connection forms; their decomposition 

(9) 

defines the rotation coefficients rabe(<P"be)' which are ex­
pressed in terms of the C~b(D;b) as 

2rab,,= - Cab" + Ceob ' 2<p"l>e= -Dabc= -Dabc + Dbac + Deob • 

(10) 

Using th'e relations mentioned above that exist between 
the C's and D's, we obtain (among others) the relations 

<Pc1>4 = rab4 , ~422 = r 422 =: CJ, <P421 = r 421 =: -Z, 

cJ!423 = r 423 , 

<P1Zl = r 12 l> <P 123 = rU3 +JC(Z -Z - r 124 ), 

<P342 = r 34Z -JC r 424 , <P343 = r 343 - JC r 434 + JC. 4 , (11) 

<P232 = r Z32 +JC r 422 • 

This gives relations between the connection forms: 

<P 42 = r 42 + JC r 424e3 , (12) 

<PI2 + <P34 = r I2 + r S4 -JC(r414e
1 + r 424e

2
) 

+ [JC,4 +JC(Z -Z - 2r434)]e3
• 

Here and in the follOwing F.4= e4 (F) = h4 (F) = k"(J"F. A 
little care is necessary concerning the "comma" nota­
tion of Ref. 9 for directional derivatives in our case, 
as the derivatives e3 (F) and h3(F) of an arbitrary function 
F differ from each other; but whenever F.4 = ° is valid, 
they coincide and may then unambiguously be written F. 3 • 

The geodesic condition on k with respect to g is now 
r 424 = 0, and from (11) it then follOWS <P424 = 0, the geo­
desic condition with respect to f. Affine parametrization 
is then expressed as r 434 =0, Which would imply ~434=0. 
CJ and Z are the complex shear and complex expansion of 
k; they are the same for g and f. For the divergence of 
k we get the relation 

k";,,=Z+Z-r434 =Z+Z-<P434 • (13) 

If k is geodesic, the definition of the tetrad component 
R\41 = tR44 of the Riemann (or Ricci, resp.) tensor gives. 

Z,4 + Z (Z + r 434 ) + ! CJ!2 = t R 44 (g) = tR44{f), (14) 

the usual "propagation law" of Z. Finally, under the 
geodeSic condition on k, one readily verifies from (12) 
and Ref. 9 that the curvature forms cR42 of both metrics 
are related by 

cR4Z {f>= d\z{g) + [JC. 4 +JC(Z - Z - 2r434 )]r 42Ae
3

• (15) 

This ends our collection of auxiliary formulae; note 
that we have not used any field equations here; only for 
(14) and (15) it was assumed that k is geodesic. 

III. THE OPTICAL SCALARS OF k 

Equipped with the formalism of Sec. 2, we come back 
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to our field equations (3). n is our purpose here to de­
termine their consequences on the optical scalars of k 
which is seen to be necessarily geodeSic. This follows 
when the contracted Bianchi identities are applied to 
Eqs. (3) with JC, 0: 

(16) 

Scalar multiplication of this equation with e1,eZ,eS gives 
its translation into our tetrad formalism: 

r 414 = 0, r 424 = 0, JC. 4 +JC(Z + Z - 2r434) =0. (161 ) 

Contracting Eqs. (3) with gIW andf"" resp. , we find 
that the curvature scalars must vanish, so that (3) is 
equivalent to 

R"v(g) = - (K!/K})~JCk"k", R" .. {f)=WJCk"kv , 

which reads in tetrad form 

(17) 

R 3S(g) = - (~/K})WJC, R 33{f)=WJC, 

Rat(g) = O=Rat{f) otherwise. 
(171 ) 

Now the field equations Rzz{f)=Rza (g) = ° together 
with Rza = 2R4223 taken from (15) imply 

CJ[JC. 4 +JC(Z-Z-2r434 )]=0. (18) 

Assume tentatively that CJ *0, then from (18) and (16' ) 
Z=O, and {14)givesR44 =2!0'!2*0, so that the field 
equations R44 = ° cannot be satisfied. Hence we have 
shown that k must have vanishing shear. 

n follows from the Goldberg-Sachs theoremll that 
both g and f must have algebraically special Weyl ten­
sors, k being a multiple Debever-Penrose vector. This 
enables us in the case Z * ° to follow the Kerr1Z

•
9 pro­

cedure of constructing the algebraically special Einstein 
vacuum solutions as long as the field equation R33 = ° is 
not used. In the case Z = ° we can follow Ref. 4, where 
all metrics with R""cx:k"kv that contain a CJ=Z=O null 
congruence are given (Sec. 4). 

We will show now that the assumption Z'* ° does not 
lead to nontrivial solutions either, using Kerr's proce­
dure. Closely following Ref. 9 again, we adjust the 
tetrad {e.} such that r 423 =<P423 =0 and that r 42 = <P42 be­
comes a perfect differential - dY, thus introducing two 
complex conjugate coordinates Y, Y. Also the construc­
tion of the third coordinate p goes through without 
change, according to our remark on comma derivatives, 
whereas, when the fourth coordinate r is introduced by 
the condition r ... = 1, we must write 

e4 = dr + {3dY + MY + l8e3
, 

h4 =dr+ {3dY + A1Y+ 5'e3
• 

By (7), the real functions 18, 5' satisfy 

5' -18 =JC, 

and are determined, according to Ref. 9, as 

5' = I nl 2 + ReLZ, 

18= In!2+ReNZ, 

(19) 

(20) 

(21) 

where L, N are two complex functions (replacing the M 
of Ref. 9) which satisfy 

L.4=0=N.4 , 

ImL= ImDDDO= ImN, 
(22) 
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DL=3Ln, DN=3Nti. 

At this point we must deviate from Ref. 9, as we 
want to satisfy (17() instead of R33 = O. But now we see 
that Im(L - N) = 0, so L - N is real and satisfies 

(L - N) ,4 = O. , (L - N)ReZ = Je. (23) 

When this, together with Z 4 from (14) (where now 
(1 = R44 = 0) and r 434 = 0 (a c~nsequence of our tetrad ad­
justment, see Ref. 9) is inserted into (16'), the equation 

(24) 

results, proving that for Z * 0 the solution can only be 
trivial. 

The net result of this section therefore is that for a 
nontrivial solution we must restrict k to have vanishing 
shear, expansion and twist; g must have an algebraical­
ly special Weyl tensor with k as a multiple Debever­
Penrose vector. 

IV. CANONICAL FORM OF SOLUTIONS 

In Ref. 4, a study was made of the metrics that admit 
a null congruence k,. with vanishing shear, twist, and 
expansion and whose Ricci tensor is of the form 

(25) 

where jJ. is an unspecified function. It was shown that 
such a metric may be brought into the form 

ds2 = pZI dz + Bdu IZ + 2dudv + Hduz, (26) 

where z = x + iy and B are complex, e3 = k,.dx" = du is 
affinely parametrized by v, p >0, 8vP = O. If we use the 
cotetrad 

e1= ~p(dz + Bdu), eZ= ~p(dz + Bdu) , e3 =du, 

e4= dv +! Hdu, 

then the field equations13 R44 = 0 are identically satisfied, 
R41 = R42 = 0 imply 8~B= 0, Ru = Rzz = R1Z = 0 then deter­
mine B as far as possible. H must be of the form 

H= vZHz(u, z, z) + vH1(u, z, z) + A(u, z, z), (27) 

where Hz and Hl are completely determined by the 
equations R31 = R3Z = Rs4 = 0 once p, B have been chosen 
[an undetermined additive contribution F(u) to Hl is 
canceled by a coordinate transformation]. The remain­
ing equation R33 = - jJ. becomes a linear second-order 
differential equation of elliptic type for the function, 
A, ~A=- jJ., say. 

From this, the solutions of our problem are obtained 
as follows. First, write g in the form (26), i. e., choose 
p, B according to the restrictions above, and calculate 
Hz, H1• Then put 

g,.~dx"dx~=ds~+2Wduz, 8vW=0 (28) 

where ds~ is (26) with H= vZH2 + vH1• From (1) we then 
get 

f,.~dx"dx~=ds~+23'duZ, 8v 3'=0 (28') 

where 3' = 'IJ + 3<'. 14 This satisfies all equations, if 3', W 
satisfy the linear system 

!IJ'IJ = _ (~,1 ,q)MZ(3' -W), 

(29) 
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which is easily decoupled by going to the linear combi­
nations 3'-W, W +(K~,q)f1i. 

We do not want to give more details in this general 
case, but point out how 'certain special solutions that 
have been given elsewhfilre15 ,16 fit into this scheme. In 
the solutions indicated above both g and f will in general 
be of Petrov type n, but one can single out the types TIl 
and N. It is convenient to do this by making one further 
invariant distinction: in the (1= Z = 0 case another opti­
cal scalar eXists, the rotation4 ,7 (in the formalism of 
Sec. 2, it is equal to I r 423 I). Thus, one can classify4 

the solutions according to vanishing or nonvanishing ro­
tation: (a) In the case of vanishing rotation ("recurrent 
rays") all solutions are of type TIl or more special. 
They can be written in Kundt's canonical form as 

g,.~dx"dx~= ds~ + 2Wduz, f,.~dx"dx~=ds~ + 23'duz, 

where 

ds~= Idz + bdulz + 2dudv - v8"bduz, 

8v b=.:1z1J=0(.:1z= ~+ aay), b real, 

and where 3',W satisfy 

8v3' = 8v 'IJ= 0, 

.:1Z(3' -W)= [1 + (~,1,q)]MZ(3' -W), 

.:1z{[ 'IJ+ (~/ ,q)3' ]/[1 + (K~ ,q)]} 

= 8u8"b- !(8y b)Z_ b~b- ~(8"W. 

(30a) 

(31a) 

(32a) 

The type N subcase can be brought to this form with 
b =0; these are the pp- wave solutions described in Ref. 
15. When b is not linear in x, y, we have type In and no 
plane-frontedness in Kundt's sense. (b) In the case of 
nonvanishing rotation the canonical form is rather sim­
ple when we require type In or a more 'special one. The 
solutions can be written as (note the replacement 
W-xW, 3'-x3' made for convenience) 

g,.vdx"dx~= ds~ + 2x'IJduz, f,.vdxfl.dxv=ds~ + 2x3'duz, 

(30b) 

where 

ds~= Idz - (2vx-1 +c)dul z +2dudv + [8,,- 2x-1)c _ 3vZx-Z]duZ, 

(31b) 
8vc = .:1z(xc) = 0, creal, 

and where 3', 'IJ satisfy 

8 v3' = 8vW = 0, 

.:1z(3' - W) = [1 + (~,1,q) ]M2(3' - w), 

.:1z{[W+ (~,1K~)3']/[l + (~,1,q)]) 

= c(x-1 - 8s) 8"c - 8u 8sc - !( 8ye)Z - ~(8sC)2. 

(32b) 

The type N subcase can be brought tho this form with 
c =0; these are the plane-fronted wave solutions with 
rotating rays described in Ref. 16; ds~ is then flat but 
written in some noninertial curvilinear coordinates, so 
that g, fare KS-related to the Minkowski metric (as 
they are in the N subcase of (a), but in a very different 
way). When xc is not a linear function of x, y, we have 
type III and no plane-frontedness. 



                                                                                                                                    

132 Helmuth K. Urbantke: KS·related f-g couples as exact vacuum solutions 132 

Finally, we see, as a by-product, that, for all possi­
ble solutions, f and g have the same Petrov type. 

Note added in proof: It has been pointed out to the 
author that a relation of the kind defined by Eqs. (1), 
(2) appears to have been first considered by Trautman. 17 

It is algebraically characterized uniquely by the condi­
tion that an ansatz fl'. =g". + 2JC hI'. imply fl'· = linear 
function of JC. Whereas Trautman considered the more 
restrictive case where one demands that the (Einstein) 
field equations permit JC to be an arhitrary function of 
some scalar function a(x), Kerr and Schild3 ,9 and Robin­
son and Robinson8 considered the general case (with 
Z"* 0, by which assumption the two cases in fact become 
disjOint). The relationship between f and g should there­
fore be called TKS relation. It may also be character­
ized geometrically by the two null cones hypersculate 
each other along a common generator k. This remark 
clarifies some questions concerning causality in our 
solutions. 
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One-dimensional model of the rearrangement process 
and the Faddeev equations 
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In the paper we study the Faddeev-Lovelace equations for the one-dimensional system of three particles 
interacting via zero-range potentials. The half-ofT-shell rearrangement and elastic amplitudes are 
constructed explicitly for the particular case of the model, namely for the system consisting of three 
particles with equal masses and with two-body potentials of equal strength. These exact amplitudes 
are shown to satisfy the modified form of the Faddeev-Lovelace equations. 

I. INTRODUCTION 

In Ref. 1 we have studied the one-dimensional model 
of three particles interacting via zero-range potentials. 
The two-body potentials of the system under considera­
tion were described by the boundary conditions requir­
ing that the logarithmic derivative of the wave function 
with respect to the two-particle relative distance varia­
ble takes a constant value - a at the point of zero inter­
particle distance. The exact solution of the three-body 
Schrodinger equation was written using the Similarity of 
our quantum mechanical problem and a certain scatter­
ing problem in acoustics. 2 For the general case of 
arbitrary masses and arbitrary two-body constants a 
the solution in coordinate space was given in the form 
of Sommerfeld's contour integral, the integrand being 
the combination of the trigonometric functions and of 
certain special functions defined and applied by Mal­
uzhinetz when studying the problem of diffraction of an 
acoustic wave by a wedge with given face impedances. 
The possible scattering processes in the three-body 
system under consideration are elastic scattering, re­
arrangement, and break-up. The amplitudes of those 
processes were written explicitly in Ref. 1, in terms of 
these special functions. 

A somewhat similar three -body problem was studied 
in detail by Nussenzweig. 3 In his model one of the parti­
cle masses is assumed to be infinitely large, the re­
maining two being equal to each other. One of the two­
body potentials was assumed to be of the type described 
above, and the other one to be of the hard-core type. As 
mentioned in Ref. 1, the mO'del discussed by Nussenz­
weig may be considered as a special case of our model. 

In this paper we calculate the two-body t matrix for 
the two-body subsystems of our model and use it to con­
struct the Faddeev equations for the elastic and rear­
rangement transition amplitudes. As the simplest case 
of our model we discuss the system of three particles 
with equal masses interacting via two-body potentials 
of equal strength. For this symmetrical model we have 
calculated the half -off -the -energy -shell amplitudes 
from the three-body solution in coordinate space. We 
have undertaken to verify the Faddeev-Lovelace equa­
tions using these exact transition amplitudes. This pro­
cedure lead us to expressions with divergent integrals, 
this fact being the consequence of the singularity of the 
potentials. In order to remove these divergences we 
subtracted some "on-shell" terms from both sides of 
the Faddeev equations and checked that our exact am­
plitudes satisfy the resulting equations. 
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Dodd4 discussed the Faddeev-Lovelace equations for 
the one-dimensional system of three particles interact­
ing via delta-function potentials. The exact amplitudes 
were written in such form that they contained the factor 
which exactly cancelled the propagator in the kernel of 
the integral equations. The integrals resulting from the 
substitution of these exact amplitudes into the integral 
equations were convergent and the equations could be 
verified directly. In our case the amplitudes contain a 
factor which cancels the propagator only partly. The 
resulting integrals are divergent. These difficulties are 
apparently connected with the fact that the potentials we 
use contain a hard -core part, i. e., the particles are 
impenetrable. 

II. THE TWO-BODY T MATRIX 

As in Ref. 1 we discuss the Schrodinger equation 
which is of the following form: 

d 2 
A 

- (]x2 >It{x)=M{x), 

with a boundary condition 

d 
dx >It{x) +a>It{x)=O, for x==O, 

where a is a real number. 

(I) 

(2) 

The boundary condition (2) describes the action of the 
zero-range potential, which is impenetrable, i.e., the 
wave coming from one end of the x axis cannot be trans­
mitted through the scattering center at x==O. We shall 
also assume that 

01<0. (3) 

Under this assumption Eq. (I) with the condition (2) has 
one bound state solution different from zero on the 
semiaxis x < 0: 

>It b{X) ==H{ -x)( - 201 )1/2 exp{ -ax), 

where H{x) is the Heaviside step function. 

(4) 

The solutions corresponding to E> 0, different from 
zero for negative values of x, read as follows: 

>It(x) ==H(-x)(2~) 1/lexp(i"Ex) -(: ~ :~)eXP(- i"ix~. 
(5) 

Equation (1) with the boundary condition (2) can be 
written in the form of a Single equation: 

( -:x: + vex») >It{x) ==E'lt(x), (6) 
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where v(x)'It(x) is the distribution of the following type: 

v(x)'It(x) = 'It'(0)· Ii(x) + 'It(O)· Ii'(x) 

= 'It(0)(- aa(x) + a'(x» , 

'It(0) ~'It(x + 0) -'It(x - 0). 

(7) 

(7') 

The t matrix for the potential under consideration can 
be calculated applying the method of the M\J'J.ler wave 
operator. 5 Proceeding as in Ref. 5 we write the expres­
sion for the t matrix elements off the energy shell in the 
following form: 

(kl t(z) I k')=(l/27T)l/a i: dxexp(-ikx)v(x)'lt k',.(x), (8) 

-oo<k,k'<oo, 

where k is the momentum coordinate conjugated with 
the coordinate x, and 'It It, .. (x) is the solution of the fol­
lOwing equation: 

( 
d

a
) ( 1 )1/2 - dx2 -z 'It,.., .. (x)= 27T (k,2 -z)exp(ik'x), 

with the boundary condition 

d 
dx 'It,.., .. (x) +a'ltk".(x)=O, for x=O. 

(9) 

(9') 

The meaning of the expreSSion v(x)'It k' .(x) in (8) is the 
same as that given by (7), i.e., ' 

(10) 

At Ixl-oo, the difference ['It,.. .(X)-(1/27T)1/a exp(ik'x)1 
should tend to zero for all complex values of z not lying 
on the positive real semiaxis. 

The solution of Eq. (9) satisfying these conditions is 

l
(l/27T) 1/2 (exp(ik'X) - : ~:::z exp(iv'Zx»), 

'It (x) = for x> 0, 

"'," ( ) (l/27T)l/a exp(ik'x+ _: :iik~ exp(-iv'Zx) , 

for x<O, 

Imv'Z .. O. (11) 

, From (8), (10), and (11) we obtain 

(kl t(z)1 k')=(2~y/a f~ dxexp(-ikx)v(x)'It,..jx), 

1 (k .) 2iv'Z ( k' .) =-2 +Ul! -+ 2 - +za. 7T z a 
(12) 

In the limit I a I - 00 the right-hand side of (12) tends to 
- 2iv'Z(27T)-1 which is the expreSSion for the hard-core 
t matrix. 5 

The t matrix element given by Eq. (12) is separable 
in the coordinates k, k' and can be written in the form 

(kl t(z) I k') =g*(k)T(Z)g(k') = (k I i)T(Z)(i I k'), (13) 

where g{k) is the form factor of the bound state 

g*(k) = (k I i) = _(k2 + a2)(k I 'lt b) = -i(- a/7T)1/2(k + i a) (14) 

and the propagator T(Z) reads as follows: 

iv'Z 
T(Z) = ( 2) • a z+a 

(15) 
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In the following we shall discuss the problem of scat­
tering of three particles moving in one dimension. The 
potentials ~ and V3 between the particles 2 and 3 and 
between the particles 1 and 2, respectively, is assumed 
to be of the type described in Sec. I and the potential V; 
of the pair 1, 3 is put equal to zero. 

The position and momentum coordinates used in the 
three-body system are defined as follows1: 

Sl = (ra -r3)[2mam 3 /(ma + m 3 )11/a, 

t1 = {[(mar2 + m 3r3)/(ma + m 3)1- r1}' [2m1(m2 

+m3)/(m1 +m2 +m3)11/2, (16) 

k1 = (m.jJa - m:J>3)J[2mam3(ma + m 3 )1112
, 

ql = [m1(Pa + P3) - (ma +m3)P11J[2m1(m 2 + m 3)(m1 +ma 

(17) 

where r i and Pi are the position and momentum co­
ordinates, respectively, in the three-body center of 
mass system. We shall also use the coordinates (S3' t3) 
and (k3 , q3)' the definitions of which can be obtained 
from the above ones by cyclic permutations of the in­
dices 1, 2, 3. The system (S1O tl ) [or (k1O q1)1 is related 
to that of (S3' t3) [or (k3 , q3)] by the transformation 

[~~] -[=: -:][~:]. (18) 

where 

a = [m 2(m l + m 2 + m 3 ) l(m1 + m2)(ma + m 3 ) ]1/2", sin2cf> 

The Schrodinger equation for the problem under con­
sideration takes the following form: 

( 
02 (

2
) 

- OS2 - of 'It(s, t)=E'It(s, t), (20) 

(20') 

(20") 

where (s, t) is one of the systems (S1O t1) or (S3' t3) and 
the negative numbers a 1 and a 3 describe the strength of 
interaction between the particles 2 and 3 and between 
the particles 1 and 2, respectively. 

In the following we shall concentrate on the problem 
of scattering of particle 3 on the bound state of parti­
cles 1 and 2. The possible processes are the elastic 
scattering, the dissociation of the pair 1, 2, and the re­
arrangement process in which the bound state of parti­
cles 2, 3 is formed and particle 1 leaves freely. 

The exact solution of Eq. (20) was given in Ref. 1 
where the expreSSions for the scattering probabilities 
were also written in analytic form. 

Here we use the Faddeev-Lovelace formalism6,7 to 
write the integral equations for the elastic and rear­
rangement transition amplitudes off the energy shell. 
These equations take a relatively simple form due to 
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the fact that the two-body t matrices as given by expres­
sion (12) are of the one-component separable form. 

We define the elastic scattering amplitude h33(qa,P) 
and the rearrangement amplitude ht3(qUP) as follows: 

hl3(ql' p) = (ql' i I Go(E + iO)UjaGo(E + iO) 13, p) 

+(1- 0iS)· [(ql,iIGo(E+iO) 13,p) 

- (qt, ilGo{E +iO)ViGO{E + io)13,p»), (21) 

i=1,3, 

where for simplicity we have denoted the relative 
momentum of particle 3 in the initial state by p, and 

Go(E + iO) = [E + iO - Ho]-l , (22) 

rr; iE + iO) = (Vi + Vk ) + (Vj + ~)G(E + iO)(Vi + ~), 

i,j,k=I,2,3, (23) 

G{E +iO) =(E +iO _H)-l, (24) 

I i) is the form factor of the bound state of the subsys­
tem i [see Eq. (14)]. 

The term in the square brackets in Eq. (21) vanishes 
when hia are calculated on the energy shell. The reason 
for including it in the definitions (21) is that it leads to a 
more symmetrical form of the integral equations. 6 

The Faddeev-Lovelace equations for the amplitudes 
hts and haa are as follows: 

hts(q, p;E) = b13(q, p;E) + I: dq' bl3( q, q';E)1' 3(E _ q'2) 

xhaa(q',p;E), (25) 

has(q,p;E) = J..:dq'bal(q, q';E)1'l(E - q,2)htS(q' ,p;E), 

(26) 

where 1'l(E) and 1's(E) are the propagators of the two­
body t matrices II (E) and t3 {E), given by (15). In Eqs. 
(25) and (26) we have dropped the infinitesimal imagin­
ary part iO of the energy variable E. The Born terms 
blS and b31 are defined by the expressions 

b13(q, q';E)=(I, qIGo(E)13,q'), 

b31(q, q';E)=(3, qIGo(E) I 1, q'). 

From (14), (27), (28) and using the relations (18) 
[written for the (k, q) variables] we obtain 

(27) 

(28) 

b1S(q, q'j E) = - (lTa)-l(a l a S )1/2[E - (a2)-1(q2 + 2bqq' + q,2)]-1 

X[-(b/a)q-a-1q' +ia1][-a-lq-(b/a)q' +iasl, 

(29) 

b31 (q, q'; E) = - (1Ta)-l(a1a3)1/2[E - (a2)-1(q2 + 2bqq + q2)]-1 

x [(b/a)q + a-1q' + ia 3J[a-1q + (b/a)q' +i(1)]. 

(30) 

If we put 

E=tT -a~ (31) 

in the definitions (21) and in the integral equations (26) 
we obtain the equations for the half-on-the-energy-shell 
amplitudes. The energy of the initial state, i. e., the 
sum of the kinetic energy of particle 3 and of the bound 
state energy of the pair 1, 2 is now related to the ener­
gy variable E by the energy conservation rule. 
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In this case the amplitudes hts and ha3 can be ex­
pressed in terms of the exact three -body solution4 I'll p) 
corresponding to the incident state 1({l3'P), where ({l3 is 
the bound state function of the pair 1, 2. 

Applying the definitions (21), (23) and noting that 

Go(P2 -a~)13,p)= I ({l3,p), (32) 

we obtain 

h33(Q,P)=(q, 3IGo(E)[~ + ~G(E)~JI({la,P) 

= (q, 3IGo(E)~ I 'lip), (33) 

hts(q,p)=(q, IIGo(E)[~ + V3G(E)~]I({la,P) 

+ (q, 11 Go(E)f; I ({l 3' p) - (q, 11 Go(E)~ I ({la, p) 

=(q, 11 Go(E)Va[1 + G(E)~] l({la,P) 

(34) 

where we have used the fact that 'lip is the solution of 
the Lippmann-Schwinger equation 

(35) 

The dissociation amplitude (on-the-energy-shell) can 
be expressed in terms of the amplitudes (33) and (34). 
USing the Lovelace formalism we obtain the follOwing 
result: 

T03(~' ql;P) = (k1 , qll ~ + Val 'lip) 

= (ki • qll Tt(E)Go(E)f; I 'lip) 

+ (ku ql\ T3(E)Go(E)~ I 'lip), (36) 

where we put ki + qi = E = p2 - a~. 

T1 (E) and T 3(E) are the two-body t-operators acting 
in the three -particle space. 

USing the separable forms of Tl and T 3 , and the ex­
pressions (33) and (34), we obtain 

Toa(k!> ql;P) =g1(k1)1'1(E - qi)hta(ql'P) 

+ g1(k3 )1'3(E -1a)haa(q3'P)' (37) 

where (kg, q3) are related to (ku ql) by the transforma­
tion (18), and gT(k j ) (i = 1, 3) are given by (14). 

IV. THE MODEL OF EQUAL MASSES AND 
EQUAL POTENTIALS 

In Ref. 1 we noted that the solution of the scattering 
problem under consideration takes a very simple form 
if we put: 

m1 =m2 =m3 , 

a 1 =a 3 =a, i.e., ~=V3' (38) 

In this section we calculate the explicit forms of the 
half-on-the-energy-shell amplitudes for that symmetri­
cal problem and discuss the Faddeev equations in that 
case. 

Using (30) we find from (18) that 

2<I>=lT/3, 

a=sin2<I>=~fi; b=cos2<I>=~. (39) 

The position coordinate system is shown in Fig. 1. 
We conSider the solution different from zero in region 
I where the order of particles is 1,2,3 and both co-
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Region 1 
incident wave -

FIG. 1. The three-body coordinate system. 

ordinates Sl and Ss are negative. In that region the 
wave coming from infinity has a positive value of the 
momentum coordinate qs, and the wave leaving the re­
action center has a positive value of q1' As mentioned 
above, we assume that in the initial state particles 1 
and 2 are bound which corresponds to the situation of 
the "surface" wave coming from infinity along the 
boundary Ss == 0 in the region I. 

The exact solution can be derived in this case from 
the general solution of Eq. (20) as shown in Ref. 1 or 
it can be readily calculated directly by the method of 
images. One has to add to the incident wave the two 
images resulting from the reflection of the incident 
wave from the "mirrors" Ss == 0 and Sl == 0 in such a way 
that the corresponding boundary conditions will be 
fulfilled. The resulting solution takes the follOwing 
form: 

-a 1/2[ (3a +if3P ) 
IJIp(s,t)== -:;;- exp(-ass+ipts)- a -if3p 

(
1 f3.) t(f3 1.\ x expsa . - 2"a + """"2 tp exp 3 -""""2 a - 2"tP; 

+C: ~::::) (3~ ~ii~) exp(-as1 +it1P)] 

(40) 

in region I, and IJIp(s, t) == 0 in the remaining part of the 
(s, t) plane. The last term in (40) was written using the 
coordinates (S1> t1) in order to show that it represents 
the wave leaving the reaction center along the boundary 
SI == O. It represents the final state in which particles 
2 and 3 are bound. We see also from (40) that the am­
plitude of dissociation is equal to zero. 

In order to calculate the half-off-shell transition am­
plitudes we have to study the behavior of the functions 
ViIJl p and YsIJI p which are involved in expressions (33) and 
(34). Inserting into the SchrOdinger equation the formal 
expressions Vi (SI) and Vs(ss) for the potentials de­
scribed by the boundary conditions (20') and (20") and 
treating the discontinuous functions lJI(s, t), alJlIBss, and 
aw las l as distribUtions, 8 we obtain the prescription how 
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to treat the expression (f;. + Ys)w under the integral sign: 

1: ds 1: dtg(s, t)(f;. + Ys)w(s, t) 

(41) 

where g(s, t) is a test function continuously differentiable 
and the symbol I is defined as follows: 

I f{s ==0, t) ~f(s + 0, t) - f(s - 0, t). (41') 

From the zero-rangeness of the potentials we can de­
duce that the first term in the square brackets in (41) 
describes the action of f;.wand the second term in the 
square brackets describes the action of Ysw. 

From (40) we obtain 

-SWp(Sl ==0, il) == (- ~r/2 [-2(: ~!~;) 

(42) 

and 

== 1. S ~ (ss == 0, is), (43) 
a uss 

USing (41), (42), (43) and the definitions (33) and (34) 
we obtain the integral expreSSions for the function hIS 

and has. For the function has we obtain 

(-a)1 /2f"" . 1 
hS3(q,P)= ,f2' dks(-ks+ta)E t.2 J+'O 

21ft."" -«s-I/ t 

X i: dSl i: dt1 exp [- iS1( - tks + '7 q ) 

- it1 (- v: ks - tq) ] • f;.w p(su t1), 

=+i{-2~)l/2 C"" dks(-ks+ia) 
1T )_00 

( 
i i) 1 

x -a - 2" ks + 2"f3q ~ _ (p2 _ if _a 2 +iO) 

x .r dtlexp~tl(V; k 3 +tq)]<-)Iwp(s==0,t1), 

(44) 
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We perform the integration over kg by closing the 
contour in the upper half -plane and by calculating the 
residue at 

(45) 

This procedure is justified because of the exponentially 
decreasing component for Imkg> 0 under the second 
integral sign. Performing subsequently the integration 
over tu we obtain after algebraiC transformations 

_ ..f3Ci1 (a+i..f'Sp)(P-2 q -i..f'Sa) 
h33(q, p) - -"""2iT t (p + q) {'Ja - ip P + 2q - i{'Ja . 

(46) 

Proceeding in the same way we obtain the following ex­
pression for the rearrangement amplitude: 

( )_+"f3 ~( + )fa +i..f'SPXP-2q+i{'JCi) 
~g q,p - 217 t p q \..f'Sa -ip p+2q+i{'Ja ' 

(47) 

with t given by (45). 

The amplitudes on the energy shell can by calculated 
from (46) and (47) by putting 

t="/p2_(f-a 2=-ia, for Ji2=cf. (48) 

Thus, we have 

hgg(- p,p) =h19(- p,p) = 0, 

hgg(p,p) = -(217r12ip, 

j, (p p)=+~ 2i (a + i . ..f'Sp\(3a +~..f'SP). 
"'13' 217 P 3Ci - f{'JpJ a - t..f'Sp 

(49) 

The relation between the on-shell values of the am­
plitudes hj3 and the transmission and reflection probabil­
ities can be deduced by studying the asymptotic behavior 
of the formal Lippmann-Schwinger equations. The func­
tion ll!p(s, t) may be written as a solution of the following 
integral equations: 

ll! p(Sg, tg) = (- a /17)1/2H( - Sg) exp( -a Sg) exp(iptg) 
'" 0 

+ i", dt; i",ds;Gg(sg, tg;S;, t~;p2 +(2) 

X v;. (s~)ll! p(S~, t~), (50) 

or 
'" 0 ll! p(su t1) = i", dtf i", dsfG1(su t1;s{, t{;p2 +(2) 

X Vg(S{)ll! p(sf, to, (51) 

where 

G j(Sj, Ij;s~, 1;;p2 - ( 2)=H( - sj)H( - sj)(-2a)exp[ - a(Sj + s;)] 

with 

+1 r'" 
x 2ip exp(ipl/j-tj!>+}o dp' 

x exp(i../p - p'2 - a 2 +iO I ti - td) 
2i../p2 _ p'2_ a 2 +iO 

x Xp~Sj)Xp~S;), i::::: 1, 3 (52) 

Xp(Si) = (217t1/2H( - sj){exp(ipsj) - [(a + ip)/(a - ip)] 

x exp( - ipsj)}' 

Studying the asymptotic behavior of the right-hand sides 
of Eqs. (50) and (51) for tg_±oo and 11 _±OO, respec-
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tively, we conclude that: 

(1) the amplitude of reflection in channel 3 is 

R33 = +(217 /2ip) (fPg , - p I v;. Ill! p) = (217 /2ip)hgg( - p, p) = 0, 

(53) 

(b) the amplitude transmission in channel 3 is 

Tg3= 1 + (217/2ip)(fPg,pl v;. I ll!p) = 1 + (217/2ip)hgg(p,p)=0, 

(54) 

(c) the amplitude of the rearrangement process, with 
the final state momentum q1 equal to p, is 

R 13 = +(217 /2ip)(fP u p I Vg Ill!) = + (217/2ip)h19(p, p) 

(d) the amplitude of the rearrangement process with 
q1 = -p is 

(55) 

T13 = +(21T /2ip)(fP u - p I Ys Ill! p) = +(217 /2ip)~g( - p, p) = O. 

(56) 

The amplitude of the dissociation process can be ex­
pressed in terms of the functions ~g and hg3• Employing 
(36) we get 

T ( . ( )-1/2r.( . )../pa-(jf.-a 2 +w ( ) 
09ku q1,p)=+-a1T Lk1 + ta p2-f/t+iO h19 quP 

../P-lA- a2 +W ~ 
+(kg+ia) p2-i;+iO hsg(qg,P)J' (57) 

where k~ + f/t= ~ + i; = p2 _Ci 2 and 

kg = - !k1 - (.f3"/2)q1; qg = (.f3"/2)k1 -!q1' 

Substituting the expreSSions (46) and (47) into (57) and 
performing the calculations, we obtain 

T og(ku q1;P) == (kl> q11 v;. + Ys Ill! p) = 0, (58) 

in agreement with the result which can be obtained 
directly by studying the solution (40). The existence of 
nonzero dissociation probability should manifest itself 
in the expreSSion of the wave function as a term de­
scribing a circular wave and such a term is absent in 
(40). 

No we shall study the Faddeev equations (25) and (26) 
for the problem of equal masses and equal potentials. In 
the case, when discussing the half -off -shell form of the 
equations, we get 

h ( )=+(2a) -q-2p+i..f'Sa + 2i 
'"1g q,p .f3"1T 2q+p+i..J3a 1T 

x L: dq'(-q-2q' +i.f3"a) 

x 1 
3p2 _ 3Ci 2 - 41 - 4qq' - 4q,2 + iO 

../pa _a2 - q'2 +iO 
x(-2q- q' +i..f3a) p2 _ q,2 +iO h33(q',P), 

(59) 

hgg(q,p) = ..! dq'(q+2q' +i..f'Sa) 
2.

1
'" 

1T _'" 

x 1 
3p2 - 3a 2 - 41 - 4qq' - 4q,2 + iO 
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x(2q+ q' +il3a) ";Jf2p;~:~ r;;iO htg(q',p). 

(60) 

We substitute the exact expressions (46) and (47) for htg 

and hgg into (59) and (60) and try to check the equality 
of both sides in each of the resulting expressions. The 
calculations are simplified by the fact that the factor 
t="; p2 - q'2 _a 2 + iO of the integral kernels is cancelled 
by the factor r l of the amplitudes. However, differently 
from the problem of three collinear particles interacting 
via delta function potentials discussed by Dodd in Ref. 4, 
the resulting integrals on the right-hand sides of Eqs. 
(59) and (60) are not convergent: 

? (+i a)a + i..f3p 1"" hgg(q,p)= 7 l3a -ip _"" dq' 

(
q + 2q' + il3a )(2q + q' + il3a) 

x 4q,2+4qq'+4i+3a 2+3p2-iO 

x 1 p -2q' +il3a) 
q' -p -iO p+2q+i l3a ' 

ht ( p)~ (+ 2a)-q-2P +il3a _(ia)a +il3p 
g q, 13iT 2q+p+i{3a r {3a -ip 

(61) 

x 1"" d '(- q -2q' + il3a)(-2q - q' +il3a) 
_"" q 4q,2 + 4qq' + 4i - 3p2 + 3a 2 - iO 

x 1 P -2q' -il3a) 
q' - p - iO P + 2q' - il3a • 

(62) 

The integrals in (61) and (62) are divergent because of 
the too slow decrease of the integrands for I q' I _ 00. 

The integrals exist in the principal value meaning, but 
the calculations performed with the p. v. definitions9 of 
the integrals do not lead to the equality of the right- and 
left-hand sides in the Eqs. (61) and (62). 

The divergent integrals in (61) and (62) may be for­
mally written as 

L:Kg(q,p, q')dq' 

and 

r:Kl(q,P, q')dq', respectively. 

We find that the integrals 

i: [Kg(q, p, q') - Kg(± p, p, q'») dq', 

r: [Kl (q, p, q') - Kl (± p, p, q'») dq' 

(63) 

(64) 

are convergent in the ordinary sense. We can calculate 
them by summing up the residua at the poles in the upper 
half-plane: 

Proceeding in this way we have checked the following 
equalities: 
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xl: dq'[Kg(q,p, q') -Kg(±p,p, q'»), 

(65) 

htg(q, p) - htg(±p,p) = b13(q,P) - b13(±p,p) + (-:2
a

) 

x(~i~:)f: dq'[K1(q,p, q') 

-Kl(±p,p, q'»), (66) 

where hgg(q,p), htg(q,p), hsg(±P,p), hlg(±p,p) are given 
by (46), (47), and (49), and we have denoted the inhomo­
geneous term in the right-hand side of (62) by b1g(q, pl. 

In conclusion, the Faddeev-Lovelace equations (25) 
and (26) could not be verifed directly. On the other hand, 
their modified forms which deal with the differences of 
the amplitudes hlg and hsg off the energy shell can be 
directly verified as follows: 

hg3(q, p) - hgg(± p, p) = i: dq'[bg1 (q, q') - b31(±p, q')] 

x T(E - q,2)htg(q', p), (67) 

htg(q, p) - htg(±p, p) = b1g(q, p) - b1g(±p, p) 

+ i: dq'[blg(q, q') - b1g(±p, q')] 

x T(E - q,2)hgg(q', p), (68) 

It remains an open question, what meaning should be 
attributed, in our case, to the Lovelace-Faddeev equa­
tions in their general form. 

Note added in proof: During the process of publication 
of this paper, the author succeeded in finding the ex­
preSSions for the cross sections for arbitrary masses 
and arbitrary constants a. 1 The same result was ob­
tained independently by McGuire and Hurst [J. B. Mc­
Guire, C.A. Hurst, J. Math. Phys. 13, 1595 (1972)]. 
The energy of the three-body bound state has also been 
found and for the case ml = m z = m 3, a 1 = a z == a, con­
sidered here, is equal to _4az• 
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It is pointed out that the extension by Yeh [J. Math. Phys. 13. 227 (1972)] of the result by Calogero 
and Marchioro [J. Math. Phys. 10, 562 (1969)] is invalid. Counterexamples are indicated; the fault 
hidden in the proof of the extended result is spotted. 

Lower bounds to the ground-state energy of systems 
containing many identical particles interacting by two­
body forces (and possibly also with an external potential) 
can be obtained from a powerful lemma, whose general 
formulation and proof has been given recently. 1 They 
are expressed in terms of the ground-state energies of 
(simpler) systems composed of a smaller number of 
particles having masses and/or interactions obtained 
from the original ones by appropriate scaling. This re­
duction process can be continued all the way down to 
systems involving one and two particles only. As an ex­
ample of the results that can be obtained in this manner, 
we report the formula l 

(1) 

where EN is the ground-state energy of the system com­
posed of N identical particles interacting pairwise via a 
given potential V and with a given external (single-par­
ticle) potential W, while E2(1;N -1;1) is the ground-state 
energy of the system composed of only two such parti­
cles, interacting with the same external potential and, 
among themselves, by the potential (N -l)V, namely by 
a two-body potential that is N -1 times stronger than 
the original one. 

Very recently a paper has been published, in which 
these results are extended to other energy levels be­
sides the ground state. 2 Thus, for instance, in place of 
(1), the inequality 

E1:;. iNE~(l;N -1;1) (2) 

has been obtained, corresponding to the statement that 
"the ith eigenvalue of HN is not less than N /2 times the 
ith energy eigenvalue of the system composed of two 
such particles interacting with the same external poten­
tial and among themselves through a two-body interpar­
ticle potential, which is N -1 times stronger than the 
original interparticle potential". 2 Here of course HN is 
the N -particle Hamiltonian, and the energy levels are 
ordered so thatE1:;. Ek if i > j. For i = 1, the inequality 
(2) coincides with (1), and it is certainly true l

; for 
i> 1, the inequality (2) does not generally hold. The 
more general statement,2 that extendS to excited levels 
the lemma of Calogero and Marchioro, 1 and from which 
the inequality (2) follows as a special case, is also 
invalid. 

Indeed, the inequality (2) could not be right, since in 
the case without external potentials and with two -body 
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regular potentials vanishing fast at infinity there is gen­
erally only a finite number of negative-energy states in 
the two-body problem, but an infinite number of nega­
tive states in the N-body problem with N:;. 3 (corre­
sponding, for instance, to configurations containing a 
2 -body cluster and N - 2 free particles far apart). 3 It 
is also easy to construct explicit counterexamples to 
(2), USing exactly solvable N-body problems. 4 

The fault in the proof by Yeh2 need not be discussed 
in detail, since it is immediately apparent once the fol­
lOwing trivial, but subtle, remark is made. Consider 
the Hamiltonian 

(3) 

where Ti is the kinetic energy of the ith particle, Wi 
the external potential with which the ith particle inter­
acts, and Vl2 the interparticle potential between parti­
cles 1 and 2. Let l/J(1, 2) be the ground-state wavefunction 
of the 2-body problem with this Hamiltonian, and E2 the 
corresponding energy: 

(4) 

Consider now a 3-body problem with this same Hamilto­
nian. Clearly the ground state of this problem is charac­
terized by the wavefunction l/J(1,2)qJ(3), where qJ(3) is 
arbitrary (if you like, normalizable), since H2 neither 
acts nor depends in any way on the coordinates of the 
third particle; and the corresponding energy coincides 
with the ground-state energy of the two-body problem: 

(5) 

But now this energy level is infinitely degenerate (due 
to the arbitrariness in the choice of qJ), in contrast to 
the situation in the two-body case. This degeneracy, 
that is ignored in the proof by Yeh, 2 explains why the 
paradoxical result of Eq. (2) was obtained. If this de­
generacy is taken into account, it prevents the exten­
sion of the Calogero and Marchioro result l to other en­
ergy levels besides the ground state, at least for all 
cases in which the comparison systems contain less 
particles than the original system. 

Only if the comparison system contains as many par­
ticles as the original system, and moreover at least its 
first few eigenvalues are discrete and not infinitely de­
generate, the extension of the lower bound to excited 
states yields nontrivial results. 5 It is possible to invent 
examples of this kind where the comparison system is 
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still considerably simpler than the original problem, 
this being of course a necessary condition for the use­
fulness of this kind of approach. 5 None of these exam­
ples seems, however, to be particularly interesting, 

iF. Calogero and C. Marchioro, J. Math. Phys. 10, 562 
(1969). For previous, but less general, versions of this re­
sult see the other papers quoted in this reference. 

2R.H. T. Yeh, J. Math. Phys. 13, 227 (1972). 
3If the lack of normalizability of the wavefunctions describing 
the free particles is considered objectionable, the systems 
can be enclosed into a large, but finite, box; then the number 
of negative-energy states in the many-body case is not infi­
nite, but it is still arbitrarily large (since the size of the box 
can be chosen arbitrarily large), and this is clearly inconsis­
tent with Eq. (2). 

4F. Calogero, J. Math. Phys. 12, 419 (1971). 
5The lower bound result can be extended to excited states, us­
ing comparison systems involving N particles not all of which 
interact among themselves. For instance the JMP referee has 
pointed out that, "for an even number N of particles, E';j) 
~ 'Z~2 E~"~l) (1;N -1;1) (vIi) ~ v~il ~ v~i)~ ... v1il) , where the 
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notation is that used in (this paper), and the v~il are to be 
chosen so that the sum on the right-hand side achieves the 
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i' th-Iowest value possible; e. g., for the first excited state, 
the inequality becomes E»)~ (iN-1)E~O)(1;N-1;1) 
+E~1)(1;N-1;1). This result follows at once from the obser­
vation that the exact eigenfunctions for the full N-particle 
system are legitimate trial eigenfunctions for a system of 
iN independent particle pairs, each having the Hamiltonian 
TI + T2 + WI + W2 + (N -1) Vi2." It should be noted that this result, 
while certainly correct, is nontrivial [namely, it yields a 
lower bound for the first excited state that is higher than the 
bound for the ground state given by Eq. (1) J only if the two­
body problem characterized by the Hamiltonian Ti + T2 + WI 
+ W2 + (N -1)Vi2 has a nondegenerate ground state. A neces­
sary condition for that is the presence of the external poten­
tial W, for otherwise translation invariance implies the well 
known (and, in this context, highly relevant) degeneracy as­
sociated with the localization of the center of mass. Thus 
this lower bound can be stringent only for systems where the 
external potential plays a role, in binding the system, at 
least comparable to that of the interparticle potential. (This 
footnote has been added to take into account a point raised by 
the referee). 


	JMP, Volume 15, Issue 01, Page 0001
	JMP, Volume 15, Issue 01, Page 0007
	JMP, Volume 15, Issue 01, Page 0009
	JMP, Volume 15, Issue 01, Page 0014
	JMP, Volume 15, Issue 01, Page 0017
	JMP, Volume 15, Issue 01, Page 0020
	JMP, Volume 15, Issue 01, Page 0025
	JMP, Volume 15, Issue 01, Page 0031
	JMP, Volume 15, Issue 01, Page 0035
	JMP, Volume 15, Issue 01, Page 0041
	JMP, Volume 15, Issue 01, Page 0044
	JMP, Volume 15, Issue 01, Page 0046
	JMP, Volume 15, Issue 01, Page 0053
	JMP, Volume 15, Issue 01, Page 0055
	JMP, Volume 15, Issue 01, Page 0060
	JMP, Volume 15, Issue 01, Page 0065
	JMP, Volume 15, Issue 01, Page 0067
	JMP, Volume 15, Issue 01, Page 0070
	JMP, Volume 15, Issue 01, Page 0075
	JMP, Volume 15, Issue 01, Page 0082
	JMP, Volume 15, Issue 01, Page 0086
	JMP, Volume 15, Issue 01, Page 0088
	JMP, Volume 15, Issue 01, Page 0101
	JMP, Volume 15, Issue 01, Page 0114
	JMP, Volume 15, Issue 01, Page 0119
	JMP, Volume 15, Issue 01, Page 0125
	JMP, Volume 15, Issue 01, Page 0129
	JMP, Volume 15, Issue 01, Page 0133
	JMP, Volume 15, Issue 01, Page 0139

